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1.  Taxonomy of the extant great apes 
 

Family Hominidae (hominids; extant great apes) 
Subfamily Homininae (hominines; extant African great apes) Ponginae (pongines) 

Tribe Hominini 
(hominins) 

Panini (panins) Gorillini (gorillins) Pongini (pongins) 

Genus Homo Pan Gorilla Pongo 
Species H. sapiens 

(modern 
human) 

P. troglodytes 
(chimpanzee) 

P. paniscus 
(bonobo) 

G. gorilla 
(Western 
gorilla) 

G. beringei 
(Eastern 
gorilla) 

P. pygmaeus 
(Bornean 

orangutan) 

P. abelii 
(Sumatran 
orangutan) 

Table ST1.1. Taxonomy of the extant great ape family, following Wood and Harrison (Wood and 
Harrison 2011). Publicly available reference genomes exist for species in boldface. (Pongo abelii was 
formerly designated P. pygmaeus abelii, a subspecies of P. pygmaeus, but is now accepted as a 
separate species (Singleton et al. 2008).) 

2. Genome Sequencing 
 
 Kamilah Kwanza Mukisi EB(JC) 
Species G. gorilla gorilla 

(Western Lowland) 
G. gorilla gorilla 
(Western Lowland) 

G. beringei graueri 
(Eastern Lowland) 

G. gorilla gorilla 
(Western Lowland) 

Sex Female Male Male Female 
Date of birth 5 Dec 1977 2 Mar 1989 1 Jan 1957 Unavailable 
Location San Diego Wild Animal 

Park, San Diego, 
California USA 

Lincoln Park Zoo, 
Chicago, Illinois 
USA 

(Died 17 Dec 2000) Unavailable 

Stud number 0661 9912 1107 Unavailable 
Table ST2.1: Gorillas sampled in this study 

Assembly data 

The primary sequence data for assembly comprised 5.4 Gbp of ABI capillary-sequenced 
whole-genome shotgun read pairs, and 166.1 Gbp of Illumina short read pairs, mostly 35-37 
bp in length with library insert sizes of 130-450 bp (Table ST2.2, Table ST2.3). All sequence 
was derived from DNA sampled from a single female Western Lowland gorilla (Gorilla 
gorilla gorilla), Kamilah (Table ST2.1). All data were collected using standard sequencing 
protocols. 

 

Library SRA accession number(s) Mean insert 
size (bp) 

Read length 
(bp) 

Read pairs 
sequenced 

Total Mbp 
sequenced 

ERX000198  130 37 193,010,179 14,282 
ERX000194-ERX000196 150 34-37 610,104,905 43,604 
ERX000200 160 35 397,082,523 27,795 
ERX000199 170 35 441,573,095 30,910 
ERX007927 420 36 3,019,266 217 
ERX000190-ERX000191 450 36-37 44,473,981 3209 
ERX000192, ERX000723-ERX000726, 
ERX000728, ERX000729, ERX000731 

450 76 300,843,751 45,728 

ERX000193 3000 37 6,381,041 472 
Table ST2.2: Whole genome Illumina sequence data for Kamilah (SRA sample accession number 
ERS000016). 
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NCBI Trace Archive 
CENTER_PROJECT 

Insert range (kbp) Reads  Read length (bp) 

GORILLA-WGS-92433 2-3 2743 713 
GORILLA-WGS-92434 2.5-3 355,483 735 
GORILLA-WGS-92435 3-3.5 4218 745 
GORILLA-WGS-92436 3-3.5 4408 782 
GORILLA-WGS-92437 3.5-4 1605 625 
GORILLA-WGS-92438 3.5-4 248,658 646 
GORILLA-WGS-92439 4-5 303,819 746 
GORILLA-WGS-92440 4-5 5,040,566 745 
GORILLA-WGS-92441 5-6 1,518,041 635 
GORILLA-WGS-92442 6-7 9541 624 
GORILLA-WGS-92443 7-8 3979 610 
GORILLA-WGS-92444 8-10 2421 606 
GORILLA-WGS-92445 7-10 1960 579 
GORILLA-WGS-92446 8-12 2552 615 
  Total reads 7,499,994 
  Total bp 5,389,840,322 
Table ST2.3: Whole genome ABI capillary sequence data for Kamilah 

Other gorilla data 

To explore genetic variation within the Gorilla genus, we also collected sequence data from 
two further Western Lowland gorillas, Kwan and EB(JC), and an Eastern Lowland gorilla, 
Mukisi (Table ST2.1). Low coverage whole genome sequence data was obtained for Mukisi 
and Kwan (Table ST2.4). In addition, to obtain high depth for variant calling at selected sites 
genome wide, we created reduced representation libraries for EB(JC) and Mukisi. The same 
representation (restriction enzyme and gel slice selection) was used for both libraries, and 
both samples were multiplexed on a single lane of the sequencing machine (Table ST2.4).  

 

Individual Strategy SRA accession 
number 

Mean insert 
size (bp) 

Read 
length 

(bp) 

Read pairs 
sequenced 

Total Mbp 
sequenced 

Mukisi WG ERS004138 190 37-54 387,932,732 38,017 
Mukisi RR ERS008713 220 95 61,732,672 11,729 
EB(JC) RR ERS008712 190 95 51,236,872 9,735 
Kwanza WG SRX023771  320 37 68,062,949 5,036 
Kwanza WG SRX023772 320 35 1,186,048,916 83,023 
Kwanza WG SRX023773 310 35 318,062,772 22,264 
Table ST2.4: Whole genome (WG) and reduced representation (RR) Illumina libraries for Mukisi, 
EB(JC) and Kwanza 

Chimpanzee and bonobo data 

We also collected low coverage whole genome sequence data from a female chimpanzee 
(Pan troglodytes) ‘chimp1’ and a male bonobo (Pan paniscus) ‘bonobo1’ (Table ST2.5).  

 

Individual Strategy SRA accession 
number 

Mean insert 
size (bp) 

Read length 
(bp) 

Read pairs 
sequenced 

Total Mbp 
sequenced 

chimp1 WG ERS002007 400 76 16,496,692 2,507 
bonobo1 WG ERS002008 300 76 59,310,478 9,015 
Table ST2.5: Whole genome Illumina libraries for chimp1 and bonobo1. 
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3. Assembly  
Introduction 

Recent developments in sequencing technology have transformed the field of genome 
assembly and analysis. In comparison with the preceding technology of capillary sequencing, 
the current generation of high-throughput machines has reduced the costs and timescales of 
raw sequence production by several orders of magnitude. The much higher attainable yields 
mean that in human and other organisms with moderate genomic GC content, over 99% of the 
sequenceable genome is sampled (Bentley et al. 2008), and the vast majority of nucleotides 
are read many times, mitigating the effects of sequencing errors. 

However, the new technologies still suffer from an important disadvantage with respect to 
capillary sequencing, which is that the read lengths they produce are much shorter (35-100 bp 
compared to 600-700 bp). This has a significant effect on the difficulty of assembly, and the 
initial assemblies produced from short reads tend to have lower contiguity (assemblies are 
very fragmented) and less accurate representation of repetitive sequence structure than those 
derived from capillary reads. These problems are particularly relevant for vertebrate genomes, 
which have comparatively high repeat content, and the assembly of such genomes therefore 
remains a difficult computational problem. Furthermore the quantity of data obtainable with 
high-throughput sequencing also brings with it much greater informatics challenges of 
processing and storage. 

For the gorilla assembly we were able to combine both capillary and next generation 
sequence data, thereby benefitting from the contiguity of the former and the high coverage of 
the latter. We also took advantage of ordering information (though not sequence) from the 
human assembly to guide and improve the long-range and chromosomal structure of the 
assembly. Below we describe in detail the assembly pipeline and methods used, followed by 
an assessment of assembly quality and accuracy. 

Assembly method 

The assembly pipeline involved several phases, and incorporated a variety of tools for low-
level sequence assembly and alignment. 

1. To begin with, a de novo assembly of the Illumina data was produced using the ABySS 
assembler (Simpson, Wong et al. 2009). Only the first stage of ABySS was used, assembling 
the reads themselves but not making use of pairing information. This produced 5,624,115 
contigs with an N50 of 546 bp. Contigs longer than 50 bp were then added to the collection of 
WGS capillary read pairs and a further assembly was produced using the Phusion assembler 
(Mullikin and Ning 2003). This 'seed' assembly comprised 1,179,807 contigs with an N50 of 
2867 bp. Using the pairing information in the WGS reads, Phusion was able to place two 
thirds of these contigs into supercontigs having an N50 of 15,739 bp.  

In the subsequent phases, the aim was to grow these seed contigs and where possible merge 
them using Illumina read pairs from the initial data. To prepare for this, an alignment of all 
the Illumina data to the seed assembly was produced using Maq (Li, Ruan et al. 2008). 

2. To improve the long-range structure of the assembly, supercontig construction was guided 
by human homology. SSAHA (Ning, Cox et al. 2001) was used to map the seed contigs to the 
human genome, and was able to place 96% of them. Some contigs (representing repetitive 
sequence) placed in multiple locations, and some placed in locations that were fully spanned 
by other contigs. The latter placings were removed, but not the former, on the grounds that 
Phusion may have over-collapsed repetitive sequence.  

Supercontigs were then constructed by taking seed contigs in order of their placing on human 
(including duplicate placings), stopping wherever a potential break between human and 
gorilla was inferred. In principle, a break was inferred at any position at which there were no 
spanning read pairs in an alignment of all the Illumina data to human. (Maq was used to 
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produce such an alignment.) These occurred approximately every 100 kbp. However, if the 
placing of seed contigs around that position was consistent with their ordering and spacing in 
the original de novo supercontigs made by Phusion, so that the break was effectively spanned 
by part of a de novo supercontig, then that break was ignored. A break was also ignored if it 
was directly spanned by a seed contig. Since over 90% of the human genome was spanned in 
this way, most breaks in the Illumina alignment did not break supercontig construction, and 
the resulting supercontig N50 was over 900 kbp.  

Supercontigs constructed from placed seed contigs are referred to as 'placed' supercontigs. 
The 4% of seed contigs which did not place on human were passed to the next phase as 
'unplaced' supercontigs.  

3. A set of local assemblies was constructed, one for each supercontig, comprising the seed 
contigs in that supercontig and all the Illumina reads mapping to them, plus unmapped mates. 
(Reads were allowed to be included in more than one assembly.) Within the placed 
supercontigs the homology with human helped, since it was possible to also include Illumina 
reads mapping (with Maq) to the homologous region of human (and their unmapped mates). 
For computational efficiency, local assemblies were divided into sub-assemblies of length 50 
kbp, and subsequently spliced back together after completion. Sub-assemblies were carried 
out in parallel on a multi-core compute farm.  

4. Each sub-assembly proceeded as follows. Where Illumina reads had been drawn both from 
alignments to the seed assembly and human (i.e. in placed supercontigs), a unique set was 
constructed by removing duplicates. Then, assembly of this set plus the seed contigs was 
carried out using Velvet (Zerbino and Birney 2008). In each case the Illumina reads were 
grouped by library, and the insert size distribution parameters of each library were provided 
along with kmer size and coverage parameters required by Velvet. The seed contigs were 
supplied as ‘long' sequences, to be used by Velvet in resolving ambiguities in its assembly 
graph.  

The final graph produced by Velvet, with nodes representing stretches of assembled sequence 
and edges specifying alternative connections between them, was then used to construct the 
new supercontig. First the seed contigs were mapped onto this graph. Then, taking their order 
within the original supercontig, a path was sought within the graph from each contig to the 
next, the search extending out to twenty nodes. Where such a path existed, a contig and its 
successor were replaced by the sequence corresponding to the nodes making up the path. If 
the path was of zero length (i.e. the contigs mapped to the same node), this was called a 
merge, and often multiple contigs were merged in this way. Longer paths were called path 
joins. Where multiple paths existed, the shortest was taken. Where no path was found, the 
contig was merely extended (if possible) by sequence from the nodes onto which its ends had 
been mapped. The outcome of this process was a new scaffold in which, in general, most of 
the original seed contigs had been extended and many had been merged with their 
neighbours. Gaps between the new contigs were estimated from the original separation of 
seed contigs on human, taking into account the amount of sequence extension during 
assembly, and with negative estimates replaced by a gap of 10 bp.  

In some cases it was found that repetitive sequence within the seed contigs gave a greater risk 
of misassembly. A parameter counting the number of duplicate node occurrences was used to 
characterise this.  

This whole procedure (Velvet assembly followed by meta-assembly) was repeated three 
times, once for each of the kmer sizes 21, 23 and 25 - different kmer sizes were found to be 
effective in different regions. The resulting assemblies were ranked by number of merges, 
number of path joins, the misassembly parameter, and total amount of sequence added, and 
only the highest ranking one kept.  

Carrying this out across the genome increased the contig N50 of the whole assembly from 2.9 
to 11.9 kbp, and increased genomic representation to 95%.  
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5. The first postprocessing phase involved concatenating the sub-assemblies within 
supercontigs to make new whole supercontigs. Consecutive sub-assemblies were checked for 
overlapping sequence at adjacent ends, and spliced together where possible. In some cases 
this splicing was possible only if some sequence was cut from the ends of one or both of the 
sub-assemblies, and this is what was done if the amount of sequence to be cut was less than 
half the length of overlap. The resulting cut fragments were kept as separate contigs in the 
assembly if they were 100 bp or longer. (Evidence from remapped read depth suggests that a 
substantial fraction of these cut fragments come from heterozygous structures, representing 
sequences present in only one of the two diploid chromosomes) Where splicing was not 
possible, a gap was inserted, estimated as above from the initial separation of the sub-
assemblies on human and the amount of sequence extension at each end, with negative 
estimates replaced by 10 bp.  

6. The second postprocessing phase involved error correction using the consensus of Illumina 
reads aligned to the assembly, intended primarily to remove base substitutions and short 
indels derived from read sequencing errors (which were expected to be prevalent in stretches 
of sequence derived from the low coverage capillary reads). As before, this alignment was 
done using Maq, and then a consensus including both homozygous and heterozygous variants 
(SNPs and indels) was called. These variants were filtered using the SAMtools program (Li et 
al. 2009) with a minimum depth of ten reads. This left 397,237 homozygous SNPs and 79,731 
homozygous indels, all of which were assumed to be errors in the assembly, were used to 
correct it.  

Chromosomes comprising placed supercontigs were constructed, incorporating the human 
5/17 reciprocal translocation and the separation of regions corresponding to human 
chromosome 2 into gorilla chromosomes 2a and 2b, using the McConkey (McConkey 2004) 
nomenclature. The completed assembly comprises 2.9 Gbp on 24 chromosomes with 117 
Mbp of unplaced material 

The version of the assembly at this stage was used for the majority of analysis, and was 
released in Ensembl as gorGor3. 

Fig. SF3.1 illustrates the flow of sequence and information through the assembly pipeline up 
to this point. 
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Figure SF3.1 Assembly pipeline showing the tools used and the flow of sequence (capillary reads and 
Solexa (Illumina) reads) and ordering information. 

7. The final assembly phase made further improvements to long range structure, up to and 
including the chromosomal scale. Additional Kamilah paired-end sequence data obtained 
from BAC and fosmid clones at 11.3x and 1.4x spanning coverage respectively was used to 
help order and orient scaffolds into chromosomes, taking the order implied by human 
homology wherever there was no contrary evidence from clone ends.  

To create the chromosomal AGP files, the assembly data were aligned against the human 
genome with LASTZ to align and score non-repetitive gorilla regions against repeat-masked 
human sequence. Alignment chains were differentiated between orthologous and paralogous 
alignments and only "reciprocal best" alignments were retained in the alignment set. The 
gorilla AGP files were generated from these alignments in a manner similar to that already 
described (CGSAC 2005). 

A total of 21 breaks (list of breakpoints provided below) based on documented human/gorilla 
differences (Stanyon, Rocchi et al. 2008) were introduced.  

1. human HSA2 fusion, with HSA2:0Mb-111.9Mb on GGO2A and HSA2:111.9-242Mb on 
GGO2B. There is an inversion with GGO2A HSA2:94-111.9Mb followed by 
HSA2:90Mb-0Mb. 

2. GGO4, an inversion of the region corresponding to HSA4:49.3-70.0Mb 
3. the GGO-specific HSA5/17 reciprocal translocation: 
  GGO5 is HSA17:78.5-15.4Mb followed by HSA5:79.9-180.7Mb 
  GGO17 is HSA17:0-15.4Mb followed by HSA5:80-0Mb 
4. GGO7, an inversion of the region corresponding to HSA7:76.5-102.0Mb 
5. GGO8, an inversion of the region corresponding to HSA8:30.0-86.9Mb 
6. GGO9, an inversion of the region corresponding to HSA9:0Mb-70.0Mb 
7. GGO10, an inversion of the region corresponding to HSA10:27.6-80.9Mb 
8. GGO12, an inversion of the region corresponding to HSA12:21.2-63.6Mb 
9. GGO14, an inversion of the region corresponding to HSA14:0-44.8Mb 
10. GGO18, an inversion of the region corresponding to HSA18:0-14.9Mb  
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Gap sizes were estimated based on the human genome where possible. Centromeres were 
introduced into the gorilla sequence at the positions of the centromeres in the human 
chromosomes. On chromosome GGO2B (HSA2q), the centromere was inserted at the 
location of the ancestral centromere localized specifically by identifying its likely location by 
the presence of alpha-satellite repetitive elements. 

Alignments to human mRNAs revealed 438 "joins" between neighbouring contigs. In all but 
one case, the chromosomal AGP files were consistent with the order/orientation suggested by 
the human mRNAs. In one case, the human mRNA was interrupted by a documented 
human/gorilla inversion supported by several BAC clones. 

Finally, unplaced contigs shorter than 2kbp were removed. The completed assembly 
comprises 2.9 Gbp ordered and oriented along 24 chromosomes with 170 Mbp of unplaced 
material This version will be released as gorGor4. 

Assembly quality  

Assembly quality was assessed in two principal ways: alignment of Illumina data to the 
assembly and direct comparison with a set of finished whole fosmid sequences from the same 
individual.  

1. The Illumina data was mapped to the assembly using Maq; in total 94% of reads mapped. 
As in the error correction phase of assembly, homozygous and heterozygous variants were 
called from this alignment, this time finding 106,407 homozygous SNPs and 10,412 
homozygous indels in total (all of which are likely to be assembly errors). The counts for 
heterozygous SNPs and indels were 4,943,562 and 597,683 respectively.  

2. Twelve clones were selected at random from a fosmid library for Kamilah, and finished 
sequencing of them attempted, which was successful on all but two. The resulting ten 
sequences, of length 30-40 kbp, were mapped to the assembly using bwa (Li and Durbin 
2010). The alignments were postprocessed to identify differences (at single bases and indels 
as well as larger rearrangements) between the finished sequences and the assembly.  

Seven of the ten fosmids mapped with more than 92% of sequence on one supercontig. Of the 
remaining three, one mapped with 88% on one supercontig, one with 84%, and one with 98% 
on two supercontigs.  

Within the aligned blocks, single-base differences and indels were taken to be assembly 
errors, except where they coincided with heterozygous positions identified in the alignment of 
Illumina data or uncertainties in the finished fosmid sequences. Such errors were 
overwhelmingly found within a small number of short regions, each less than a few hundred 
bp in length. Errors were sufficiently dense within these regions that the median error 
separation was just 4 bp, but across the whole alignment stretches of error-free sequence were 
typically 7.2 kbp as measured by the N50 length. Error clusters tended to be found in 
repetitive regions of the genome or close to contig ends. In the 40% of the assembly which 
was outside RepeatMasked regions and no closer than 50 bp to a contig end, the N50 error-
free length was greater than 10 kbp and even the total rate of single-base and indel errors was 
just 0.13 per kbp. 

At larger scales, the alignment included 23 gaps in the assembly larger than 200 bp, of which 
21 had been estimated to within plus or minus 30% of their correct length. One large 
misassembly was found: a 5 kbp segment inverted and transposed by 11.5 kbp. (A check 
revealed no such corresponding rearrangement in the human genome, indicating that it was 
not an error caused by reliance on human homology.)  

An alternative assembly-wide analysis, based on an alignment of the human, chimpanzee and 
gorilla assemblies, derived an indel-based metric by comparing the observed number of gap-
delimited segments in orthologous aligned sequence with the expectation under a model of 
indel evolution (Meader, Hillier et al. 2010). Assigning indels to each of the three lineages by 
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parsimony, we obtained a value on human of 0.103 per kbp (95% c.i. 0.097 - 0.109), for 
chimpanzee 0.231 per kbp (95% c.i. 0.225-0.237), and for gorilla 0.236 per kbp (95% c.i. 
0.229-0.242), suggesting that the gorilla assembly is comparable to the chimpanzee assembly. 
according to this metric, about 2-2.5 times as bad as the human reference assembly.  

Annotation 

Annotation of genes and transcripts across the whole assembly was carried out using the 
Ensembl pipeline, drawing on evidence projected from human genome annotation and from 
alignment of human, gorilla and other vertebrate proteins from the Ensembl and Uniprot 
databases. Predictions of gene orthologues and paralogues between and within species were 
carried out using the Ensembl-Compara pipeline (Vilella et al. 2009). 

lincRNA 
Long intergenic RNA (lincRNA) transcript models were obtained from the ENSEMBL 
pipeline through filtering. Excluded were transcript models: (1) overlapping the exons or 
introns of protein coding genes (ENSEMBL) and the RefSeq (Pruitt, Tatusova et al. 2005) 
track from UCSC genome browser (UCSC (Kent 2002) mapped from human to gorilla), (2) 
transcript models of less than 200 bp length and (3) those with predicted coding potential 
(Kong, Zhang et al. 2007). 

Constraint of a lincRNA transcript was defined as the quotient of the nucleotide substitution 
rate of the transcript and the average nucleotide substitution rate of ancestral repeats within 
20kb of the lincRNA transcripts. Ancestral repeats and rates were derived using the rhesus 
macaque (rheMac2) genome assembly. Nucleotide substitution rates were estimated using the 
general reversible model implemented in the PAML4 package (Yang 2007). We employed 
the Wilcoxon rank sum test to assess the constraint of lincRNAs compared to ancestral 
repeats (median 12% suppression; p<10-5). (Table ST3.1) 

Multiple primate whole genome alignment 

We included the gorilla assembly with human (Homo sapiens), chimpanzee (Pan 
troglodytes), orangutan (Pongo abelii) and macaque (Macaca mulatta) in a 5-way whole 
genome alignment using the Enredo-Pecan-Ortheus (EPO) pipeline (Paten et al. 2008). The 
alignment as a whole contains 80-90% of each reference genome (Table ST3.2), and raw 
nucleotide divergence rates calculated within aligned blocks (Table ST3.3) are consistent with 
those observed in previous studies. 

 

reference genome percentage included 
gorilla 90.6 
human 89.5 
chimpanzee 83.1 
orangutan 79.5 
macaque 85.8 

Table ST3.2: Percentage of each reference genome included in the EPO 5-way alignment. 

 

 human chimpanzee orangutan macaque 
gorilla 1.75 1.81 3.50 6.29 
human - 1.37 3.40 6.23 

chimpanzee 1.81 - 3.44 6.27 
orangutan 3.40 3.44 - 6.35 

Table ST3.3: Percentage mismatch rates between species in the EPO 5-way alignment. 

 

 



Scally et.al - Supplementary Information 11 

4. CoalHMM and great ape speciation 
Pre-processing of the data 

We filtered the 5-species EPO alignments to remove low quality assembly and ambiguous 
alignment regions. First we removed all the synteny blocks containing zero or multiple 
sequences for any of human, chimpanzee, gorilla and orangutan. We also removed all 
positions having a gap in any of the three species human, chimpanzee and gorilla. 

The model of sequence evolution underlying CoalHMM makes multiple assumptions. First it 
assumes a molecular clock. Violation of this assumption in ingroup species (human, 
chimpanzee and gorilla) can lead to biases in the estimates of ILS, notably by introducing 
asymmetry between frequency of the HG,C and CG,H topologies (see Hobolth et al. (2011), 
supplementary material 1, but also Slatkin (2008)). A simple phylogenetic analysis shows that 
in the raw data the chimpanzee branch length is longer than the human branch, probably due 
to a higher sequence error rate on this genome (Hobolth et al. 2011). 

To identify regions with low quality score in the chimpanzee assembly, we used a 10-
nucleotide sliding window, and computed the average sequence quality score in the window. 
All windows with an average score lower than a threshold parameter were discarded, and the 
synteny blocks split accordingly. (This step was skipped for chromosome 21, where a higher-
quality chimpanzee sequence was available.) The speciation analysis was repeated with 
various threshold values, and a value of 7 was found to be the lowest for which the number of 
positions sorting as ((H,G),C) equalled the number sorting as ((C,G),H). This threshold also 
proved to be sufficient to remove the departure from a molecular clock, as assessed by 
comparing pairwise HG and CG divergences over windows of 1Mb. Nevertheless to further 
remove ambiguously aligned regions we used a 50-nucleotide sliding window and removed 
windows with at least 50 gaps summed across all species. The resulting data set, which we 
call ‘FULL’, covers 2,006,962,657 positions of the alignment. 

To test the effect of repetitive material on our results, we applied a further filter using a 5-
nucleotide sliding window and removed regions with at least 5 sites masked by RepeatMasker 
summed across all species. The resulting data set covers 654,272,926 positions of the full 
alignment. This second dataset, which we call ‘MASKED’, displays a higher proportion of 
conserved regions and contains 20% only of the human genome. 

CoalHMM analysis 

We gathered the resulting blocks into chunks of ~1Mb each, and analyzed them 
independently. We used the CoalHMM software with the model introduced in Hobolth et al 
2007 (Hobolth, Christensen et al. 2007), and further developed in Dutheil et al (Dutheil, 
Ganapathy et al. 2009). This method uses a hidden Markov chain to model the transitions 
between genealogies along the genome alignment. We reset the Markov chain for each block 
(that is, when there is a synteny break or when there is a gap in the alignment, because some 
regions have been removed by the filtering), and estimated one set of parameters per 1Mb 
chunk. A posterior decoding approach was used to reconstruct the most likely genealogy for 
each position in the genome (Dutheil, Ganapathy et al. 2009). 

We used the bias correction procedure described in Dutheil et al (Dutheil, Ganapathy et al. 
2009), using data simulated with parameter values given in Table ST4.1. 
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Ne[H] = Ne[C] = Ne[G]   30,000 
Ne[HC]   (30,000; 60,000; 120,000) 
Ne[HCG]   (40,000; 55,000; 70,000) 
Human/Chimp speciation THC  (3; 4; 5; 6) My 
Difference in the two speciation times   (2; 3; 4) My 
Divergence with Orangutan dHCGO   18 My; 
Mutation rate µ  1.0e-9 mutations per bp per year 
Recombination rate ρ   (0.5, 1.0, 1.5) cM/Mb 
Table ST4.1: Parameters used for CoalHMM bias correction 

1,000,000 sites were simulated in each case, using the GTR+Gamma model estimated on the 
real data set. The observed bias in the simulations was adjusted using a linear model, which 
was used to predict the bias in the real data and correct the estimated values. 

Demographic model 
The input data for CoalHMM is an alignment of genome sequences for each of the four great 
apes. For any species pair, e.g. human and chimpanzee, at any given position x in the 
alignment, some component of the total sequence divergence (substitutions per bp) will 
correspond to mutations occurring on the separate lineages since HC speciation, and the 
remainder will correspond to ancestral polymorphism, i.e. mutations occurring within the 
ancestral HC population. We express this as 

dHC(x) = dHCs(x) + θHC(x) 

where dHCs(x) and θHC(x) are the components of sequence divergence associated with 
speciation and ancestral polymorphism respectively. In essence, CoalHMM uses a speciation 
model, shown in Fig. SF4.1, to infer this decomposition of sequence divergence in each 
region of the alignment. The key assumptions of this model are that a) there is no genetic 
exchange between the species between the time of speciation and the present day, and b) the 
rate at which individual genetic lineages coalesce in the ancestral population is constant in 
time. 

 

 
Figure 4.1. Speciation model used by CoalHMM, showing sequence divergences dHCs and dHCGs 
associated with the HC and HCG speciation times, and ancestral polymorphism parameters θHC and 
θHCG. 

Thus in each region CoalHMM infers four demographic parameters: sequence divergences 
dHCs(x) and dHCGs(x) associated with the HC and HCG speciation times, and ancestral 
polymorphism parameters θHC(x) and θHCG(x) of the corresponding ancestral populations, as 
well as the average recombination rate. 

We discuss below the scaling of these sequence divergence estimates using a mutation rate to 
obtain speciation times in years, and also the consequences of departures from the two key 
assumptions. 
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The CoalHMM analysis described above was carried out on both MASKED and FULL 
datasets, and the final bias-corrected results from both are shown in Table ST4.2, averaged 
over the autosomes and Chromosome X. As expected, empirical and inferred divergence 
parameters are slightly lower on the MASKED dataset because it does not contain the fastest 
evolving regions of the genome. We have used the MASKED values for estimation of 
speciation times and subsequent analysis, but note that this difference corresponds to an 
effective average change in mutation rate of approximately 8%. 

 

 FULL MASKED 
 Autosomes X Autosomes X 

Number of sites 1,951,882,490 55,080,167 646,270,079 8,002,847 
dHCs (kbp-1) 7.96 ± 0.04 6.78 ± 0.28 7.38 ± 0.08 6.44 ± 0.56 
dHCGs (kbp-1) 12.92 ± 0.03 11.34 ± 0.32 11.9 ± 0.12 10.3 ± 1.1 
θHC (kbp-1) 6.97 ± 0.32 3.6 ± 0.32 5.82 ± 0.16 3.12 ± 0.56 
θHCG (kbp-1) 3.76 ± 0.08 3.03 ± 0.16 3.09 ± 0.08 2.64 ± 0.24 
median ρ (cM/Mb) 1.21 ± 0.80 1.17 ± 0.76 1.91 ± 1.12 1.39 ± 1.00 
ILS (%) 30.22 ± 0.41 16.20 ± 2.18 29.65 ± 0.56 12.69 ± 5.31 
((H,G),C) / ((C,G),H) 1.06 ± 0.02 1.09 ± 0.07 1.01 ± 0.01 0.87 ± 0.30 
Table ST4.2. Parameters inferred by CoalHMM, using both the FULL and MASKED datasets. ds,HC and 
dHCGs are the components of sequence divergence associated with HC and HCG speciation times (see 
Section 6 below). θHC and θHCG are polymorphism parameters for the ancestral HC and HCG 
populations. Also shown are the inferred genomic parameters of median recombination rate and total 
ILS fraction are given along with the ((H,G),C) / ((C,G),H) ILS asymmetry. Errors are s.e.m. 

Complete results for all inferred parameters (after bias correction) in 1 Mbp windows of the 
FULL dataset are provided in Table ST4.3 (Supplementary File). 

Variance and statistical noise in CoalHMM’s results 
The inferred parameters reported in Table ST4.3 are sensitive to mutation rate and ancestral 
effective population sizes, both of which are expected to vary across the genome from one 
region to the next. However under CoalHMM’s model assumptions, the ratio dHCGs/dHCs 
should be unaffected by either mutation rate or ancestral effective population size. Table 
ST4.4 shows the mean µ and standard deviation σ of this ratio on the autosomes and 
Chromosome X in CoalHMM’s output. Since the scale of µ and σ is dependent on 
demography, we also calculate the coefficient of variation CV = σ /µ. 

To establish the level of variance expected from statistical noise alone, we carried out 50 
coalescent simulations of 1 Mbp regions generated under CoalHMM’s demographic model 
(using similar parameters to those inferred from the real data) and applied CoalHMM’s 
inference and bias correction processes to the resulting simulated data (output provided in 
Table ST4.5 (Supplementary File)). In these results we find that the ratio dHCGs/dHCs has a CV 
which is 67% of that seen in the MASKED autosomal data and nearly 60% of that in the 
FULL autosomal data. Since this variation is seen in clean simulations under the generative 
model used for inference, there are additional sources of noise not represented and therefore 
plausibly accounting for residual variation in the real data. These include that a) the real data 
contains alignment gaps within each of the 1 Mbp regions used, and in particular after long 
gaps the Markov chain used in CoalHMM’s inference is re-initialised, and b) the sequences 
present in the real alignment are subject to sequencing and assembly errors, both of which are 
non-uniform across the genome. The latter in particular is expected to be more notable on X, 
consistent with the observation that the CV is higher on X in both FULL and MASKED 
datasets but is substantially reduced in the latter. 

An additional source of variance could be that the real data departs from CoalHMM’s 
assumptions in that this ratio is not in fact constant, perhaps due to hybridization or similar 
complexity in either or both of the HC and HCG speciation events, affecting some parts of the 
genome more than others. However, we note that this effect if present is not significant on the 
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chromosomal scale: on no chromosome in the MASKED dataset is the mean significantly 
different from the genome-wide average (data for individual autosomes not shown). We 
return to this issue below in the context of simulations of migration and ancestral 
substructure. 

 FULL MASKED Simulations 
 Autosomes X Autosomes X  

µ 1.63 1.70 1.62 1.60 1.57 
σ 0.13 0.24 0.11 0.14 0.07 
CV 0.082 0.141 0.069 0.090 0.046 
Table ST4.4: Mean, standard deviation and coefficient of variation (CV = σ /µ) seen in CoalHMMʼs 
estimates of the ratio dHCGs/dHCs on 1 Mbp regions in the FULL and MASKED datasets and in 50 
coalescent simulations under CoalHMMʼs demographic model. 

Mutation rates and scaling the results from CoalHMM 

The speciation parameters inferred by CoalHMM are expressed in units of sequence 
divergence (substitutions per bp), so we need a genomic mutation rate (substitutions per year) 
in order to scale them to units of time. Given such a rate, for example, we can convert the 
estimates of dHCs and dHCGs, into speciation times THC and THCG. However this rate needs to 
represent an average along the lineages separating the hominines, and there is considerable 
uncertainty regarding the rate or rates appropriate for hominine evolution. In this section we 
discuss the factors constraining this choice and the resulting speciation times we obtain. 

The mutation rate also varies along the genome from one region to the next. This will 
manifest as variation in the values of dHCs and dHCGs inferred by CoalHMM, since mutation 
rate is not explicitly represented in its model. (It will also affect θHC and θHCG, but these 
parameters are also determined by regional variation in ancestral effective population size – 
see below.) Additional variance in these estimates comes from noise associated with the data 
processing and coalescent analysis, and some may also be introduced by the presence of 
ancestral substructure and gene flow – an issue we return to below. 

To obtain global speciation time estimates therefore, we use values dHCs(A) and dHCGs(A) 
averaged over the autosomes, and the mutation rate we scale by is also taken to be an 
autosome-wide average. 

THC = dHCs(A) / 2µ 
THCG = dHCGs(A) / 2µ 

Chromosome X is excluded as rates are expected to be lower there for several reasons 
associated with that chromosome’s haploidy in males. 

Present-day human mutation rate estimates and the generation time 
Within the hominid family, mutation rate data is available only for humans, where we have 
estimates of the rate per generation based on analyses of de novo mutations in disease genes 
and direct sequencing of family trios (Table ST4.6). 
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per-generation 

mean mutation rate 
(10-8 bp-1generation-1) 

yearly mean mutation rate 
(10-9 bp-1y-1) 

  tgen = 30 y tgen = 25 y 
Kondrashov (2002) 1.85 (0.00-3.65) 0.62 (0.00-1.22) 0.74 (0.00-1.46) 
Lynch (2010) 1.28 (0.68-1.88) 0.42 (0.23-0.63) 0.51 (0.27-0.75) 
Roach et al. (2010) 1.10 (0.68-1.70) 0.37 (0.23-0.57) 0.44 (0.27-0.68) 
Awadalla et al. (2010) 1.36 (0.34-2.72) 0.45 (0.11-0.91) 0.54 (0.14-1.09) 
1000 Genomes Project (2010), CEU 1.17 (0.94-1.73) 0.39 (0.31-0.57) 0.47 (0.38-0.69) 
1000 Genomes Project (2010), YRI 0.97 (0.72-1.44) 0.32 (0.24-0.48) 0.39 (0.29-0.58) 
Table ST4.6: Published per-generation mean mutation rate estimates with 95% confidence intervals in 
studies of de novo mutations in modern humans, with corresponding yearly mutation rates assuming 30 
year and 25 year mean generation times. 

A value of the generation time tgen is necessary to convert rate per generation into a rate per 
year: µ = µgen / tgen. Formally, tgen is the mean separation time between generations averaged 
over genetic lineages connecting the samples, and recent studies have estimated a generation 
time of around 30 years in modern humans (Matsumura & Forster, 2008). With this scaling 
the estimates in Table ST4.6 give yearly mutation rates ranging from 0.32 to 0.62 x 10-9 bp-1y-

1. However, chimpanzeee and gorilla are observed to have a shorter generation time than 
modern humans: estimates of around 20 years have been made for both species (e.g. Teleki, 
Hunt & Pfiffering, 1976; Matsumura & Forster, 2008). It may also be that the 30 year 
generation time in modern humans is a recent development associated with changes in life 
history within the last few millenia. Thus we expect a higher mutation rate to apply in the 
other hominines today and over the three lineages as a whole back to their common ancestor. 
Based on this, in what follows we consider two values, µ = 0.5 x 10-9 bp-1y-1 and µ = 0.6 x 10-9 
bp-1y-1 for the mutation rate in hominines, reflecting an expected mean with a generation time 
of 25 years and a reasonable higher value if the mutation rate is at the upper end of the 
estimated confidence intervals and/or the mean generation time is lower. We note that these 
are substantially lower than the commonly quoted value of 1.0 x 10-9 bp-1y-1. 

Expected time of orangutan divergence requires a higher ancestral mutation rate 
Table ST4.7 shows values for THC and THCG derived from dHCs(A) and dHCGs(A) using 
mutation rates of 1.0, 0.6 and 0.5 x 10-9 bp-1y-1, under the assumption that a single constant 
mutation rate has obtained across the whole hominine clade throughout its evolution. The two 
lower rates are more consistent with several putative hominin fossils (Fig1c) and, as we have 
seen, are also compatible with estimates of the modern human per-generation mutation rate. 
However as the table also shows, if we further extend them all the way back to the orangutan 
divergence, they would imply a very ancient hominid common ancestor (TdHO = 30-36 Mya). 
Such a timeline is not consistent with the fossil evidence, which indicates a date in the mid-
Miocene (12-16 Mya) for the speciation of orangutan from the other hominids, and therefore 
a common ancestor 20 Mya at the earliest (assuming a comparable ancestral population size 
to that of the HC ancestor). Earlier times such as those of the hominoid and cercopithecoid 
speciation events, corresponding to sequence divergences with gibbon or macaque, would be 
even more at odds with the evidence of the fossil record if scaled with constant rates of 0.6 or 
0.5 x 10-9 bp-1y-1. 

From Fig. 1b, we see that if the average mutation rate on the lineage between human and 
orangutan were 0.8 x 10-9 bp-1y-1 this would suffice to bring the inferred HO sequence 
divergence time down to 19 Mya, with an implied speciation time perhaps 13-16 Mya if the 
ancestral great ape population size were similar to that of the HC population. Note that this 
would be consistent with the current mutation rate per year if there had been a substantial 
slow down in per-year mutation rate since the common ancestor of the great apes. 

Mutation rate slowdown in primates 
In fact it has been established from comparisons over longer timescales that mutation rates 
have not been constant during primate evolution, and that primate genome sequence evolution 
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has not followed a molecular clock. In particular the ‘hominoid slowdown’ – reduced branch 
lengths within the hominoid (ape) superfamily compared to their closest relatives the 
cercopithecoids (Old World monkeys) since the common ancestor approximately 30 million 
years ago – was first proposed by Goodman (1961), and has been confirmed in many studies 
since then. For example Kim et al. (2006) estimated a relative slowdown of on average 28.4% 
on the human lineage compared to baboons since the common ancestor, and Steiper & Young 
(2006) estimated slowdowns ranging from 9% to 21% on hominoid lineages compared to 
several cercopithecoids. The variation in these and other similar results is partly due to their 
having been obtained from small amounts of sequence rather than whole genome alignments, 
but the deviation from a constant rate model has been found to be strongly significant in 
relative rate tests. 

In light of its direct relationship to mutation rate, change in generation time has been 
proposed as a major factor in the variation of the primate molecular clock, with a mutation 
rate slowdown corresponding to a generation time increase. Similar life history indicators 
such as lifespan and age of maturity have also been shown to scale as mass1/4 across a wide 
range of organisms (Gillooly et al. 2005) and in primates in particular (Charnov 2004). We 
consider here what this implies for changes in generation time within the apes, given the 
observed changes in body size. Gibbons weigh around 6-12 kg, and Miocene fossil apes are 
generally estimated to have weighed about 10 kg, whereas present day apes are up to an order 
of magnitude heavier (from ~40 kg for female chimpanzees to ~180 kg for male gorillas) 
(Fleagle 1999). This change in body mass by factors of 4-10 would correspond to a 
generation time increase by factors of 1.4-1.8, and thus yearly mutation rate reduction by 
0.55-0.7. 

Mutation rate slowdown constrained by molecular clock observations 
The actual values of speciation times and ancestral mutation rates under such an explanation 
depends on the pattern of rate change, which is inaccessible to direct measurement. However 
we can explore possible models to evaluate whether there is a plausible history consistent 
with available data. 

We noted above that if the average mutation rate µHOav on the HO lineage were 0.8 x 10-9 bp-

1y-1 this would suffice to bring the implied HO speciation time into the mid-Miocene. If the 
change was linear on both H and O branches from mutation rate µHOav at the time of 
divergence TdHO to rates µH and µO at t = 0 (the present), such that e.g. on the human branch 
the rate at time t < TdHO is  

µ(t) = µH + (µdHO – µH)t / TdHO 

(and similarly on the orangutan branch), then constraining the average rate µHOav means the 
ancestral rate is given by 

µdHO = 2µHOav – (µH + µO) / 2 (4.1) 

An additional constraint comes from observations of the sequence divergence of both apes 
from macaque. Table ST3.3 shows only slightly greater sequence divergence from macaque 
to orangutan than to the African apes, on the order of 2%, which seems very small and 
therefore to require a nearly comparable decrease on rate on the pongine branch in parallel to 
that on the hominine branch. But these numbers are dominated by the long shared divergence 
from macaque, and in fact allow a substantial difference between hominine and pongine 
mutation rates. The sequence divergence dAM between macaque and any ape species A, 
incorporating a linear mutation rate slowdown on the A lineage from ancestral rate µT to µA 
starting TdHO years ago, can be integrated from macaque to A as 

dAM = 2TMµdHO - TdHO(µdHO – µA)/2  
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where TM is the sequence divergence time of apes and macaques (for which a reasonable 
estimate is 35 My). From this equation applied to human and orangutan we can derive an 
expression for the present-day mutation rate in orangutan: 
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Thus we can combine the two constraints (equations 4.1 and 4.2) to get: 
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As above, we take TdHO = 19 Mya and µHOav = 0.8 x 10-9 bp-1y-1. The data in Table ST3.3 
gives dOM / dHM = 6.35/6.23 = 1.02. If we take µH = 0.6 x 10-9 bp-1y-1, this implies a present-
day orangutan mutation rate µO = 0.73 x 10-9 bp-1y-1, and an ancestral rate of µdHO = 0.94 x 10-

9 bp-1y-1 at the time of HO divergence. This represents a slowdown 37% less strong on the 
orangutan branch than on the branch leading to human. With µH = 0.5 x 10-9 bp-1y-1 we get µO 
= 0.64 x 10-9 bp-1y-1 and µdHO = 1.03 x 10-9 bp-1y-1, representing a slowdown 25% less strong. 
Both these would correspond to shorter generation times in orangutans than in hominines, as 
observed. The corresponding rate reductions of these two scenarios since the Miocene HO 
ancestor, 0.61 and 0.48 respectively, overlap the lower end of the expected rate reduction 
calculated above from change in body mass to the power of one quarter. 

Thus we conclude that a model of changing mutation rate due to increase in generation time 
can accommodate both a Mid-Miocene orangutan speciation time and the macaque sequence 
divergence data, without requiring the degree of parallelism between human and orangutan 
branches to be overly exact, and with present day mutation rates compatible with the expected 
range of generation times. An alternate explanation that there is a higher modern mutation 
rate (i.e. the recent direct measurements of mutation rate are all biased downwards), and less 
change in mutation rate over time, would bring the HC and HCG speciation events forward in 
time. 

Speciation times under a model of changing mutation rate 
We have seen that even with a simple model of linear mutation rate change, given suitable 
endpoints we can satisfy most or all of the constraints imposed by present day per-generation 
rate measurements, the date of orangutan speciation, macaque sequence divergences and 
expected changes in body size. We now consider what this model implies for the dates of HC 
and HCG speciation. 

We derive the following expression by integrating along the H and C lineages from 0 to THC: 
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where dHCs is the sequence divergence corresponding to HC speciation (i.e. the number 
estimated by CoalHMM). A similar equation holds for THCG, replacing µC by µG and dHCs by 
dHCGs. Table ST4.7 shows the resulting estimates of THC and THCG under models 
corresponding to the two different present-day hominine mutation rates we have considered. 
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mutation rate  THC (My) THCG (My) TdHO (My) 
constant µ = 1.0 x 10-9 bp-1y-1 3.69 ± 0.04 5.95 ± 0.06 15.5 
constant µ = 0.6 x 10-9 bp-1y-1 6.15 ± 0.06 9.9 ± 0.1 30 
constant µ = 0.5 x 10-9 bp-1y-1 7.38 ± 0.08 11.9 ± 0.1 36 
linear change in µ from 0.94 to 0.6 x 10-9 bp-1y-1 over 19 My 5.54 ± 0.06 8.51 ± 0.08 19 
linear change in µ from 1.03 to 0.5 x 10-9 bp-1y-1 over 19 My 6.13 ± 0.06 9.15 ± 0.08 19 
Table ST4.7: Speciation times scaled from the autosomal speciation sequence divergences dHCs = 7.38 
± 0.08 kbp-1 and dHCGs = 11.9 ± 0.12 kbp-1 inferred by CoalHMM using the MASKED dataset (Table 
ST4.2). Scaled speciation times are given for different constant values or linear change models of yearly 
mutation rate. TdHO is the human-orangutan divergence time under the same scaling, expected to be 2-5 
My earlier than the HO speciation time depending on the ancestral HO population size. 

Considering the putative hominin fossils shown in Fig. 1b, the more recent speciation dates 
obtained under a slowdown model with a present-day human rate of 0.6 x 10-9 bp-1y-1 are 
compatible with hominin status for Ardipithecus, but not Ororrin or Sahelanthropus. The 
older dates obtained with a present-day rate of 0.5 x 10-9 bp-1y-1 are compatible with 
Ardipithecus and Ororrin as hominins, but still not Sahelanthropus. However, it is important 
to note that while we have discussed a mutation rate slowdown in the context of a linear 
model, this is only a first-order simplification. For example if most of the change occurred 
early in hominid evolution, this would result in older speciation time estimates (e.g. close to 
those obtained with a constant rate of 0.5 x 10-9 bp-1y-1), thereby accommodating 
Sahelanthropus as a hominin and possibly also Chororapithecus as a gorillin. 

Given our uncertainty regarding the level and changeability of ancestral mutation rates, we 
conclude that the genetic evidence is compatible with a range of HC speciation times from 5.5 
to 7 Mya, and HCG speciation times from 8.5 to 12 Mya. Therefore it is consistent with 
several alternatives concerning the placing of these fossil taxa with respect to human ancestry, 
and in particular does not rule out hominin status for even the oldest of them. A better 
knowledge of mutation rates in ancient hominids would be necessary for genetic data to 
provide strong answers, but it is hard at present to see how such information can be obtained. 

Ancestral effective population sizes 
Population genetic models are often parameterized by the effective population size Ne, which 
does not correspond to census population size except in very simple models, but is 
representative of population scale as experienced by genes, and characterizes many aspects of 
genomic evolution. In particular it is related to the expected level of polymorphism θ and the 
mutation rate by Ne = θ / 4µ, and thus can be calculated from the estimates θHC and θHCG for 
the ancestral HC and HCG populations, given µ. For example, with µ = 0.6 x 10-9 bp-1y-1, NHC 
= 122,000 ± 3000 on the autosomes and 65,000 ± 12,000 on X, and NHCG = 65,000 ± 2000 on 
the autosomes and 55,000 ± 5,000 on X. We consider relative changes in Ne due to selection 
or demographic changes. 

Comparison to the results of Burgess & Yang (2008) 
A previous study by Burgess & Yang (2008) analysed a smaller 5-way primate alignment 
dataset, which included the great apes and macaque. For the most part our results are in good 
agreement with theirs. In particular their unscaled speciation time estimates are very similar, 
which is unsurprising since their underlying population genetic model was also similar, as 
was their method of accounting for variability in mutation rate. They scaled their results by 
setting THC = 4 and 6 Mya, corresponding to neutral mutation rates of 0.98e-9 and 0.65e-9 
mutations per bp per year respectively. However their estimates of ancestral polymorphism 
are higher; this may be because their model precludes recombination (and hence variation of 
the tree topology) within loci. 

Effects of more complex demography on CoalHMM’s inference 

Using coalescent simulations, we investigated the effects of deviation from the demographic 
model assumed by CoalHMM, considering two plausible contingencies: a period of partial 
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gene flow between the human and chimp populations after their initial separation, and time 
variation in the ancestral population size.  

Gene flow and ancestral substructure 
Figures SF4.1-3 show the results of CoalHMM inference on data simulated under conditions 
of substructure and gene flow (migration). Three different demographic scenarios were used, 
each comprising three periods after the split from gorilla: first a single ancestral HC 
population, followed by a period of separation into two populations with genetic exchange 
between them, followed by two populations with no exchange. The periods of migration were 
from 2 to 4 My and 2 to 5.5 My, and in each case the levels of migration from H to C 
simulated were 0.1, 0.01 and 0.001 in units of 4Nem, where m is the proportion of the total 
population migrating each generation (Hein et al. 2005). Other parameters used were rho = 
1.5 cM/Mb and a gamma distribution of mutation rate variation (Dutheil et al. 2009). 

Fig. SF4.2 shows the effect on inferred speciation sequence divergence. Also shown, for 
comparison, are the results of simulations with clean splits at 2, 4 and 5.5 My with no 
subsequent migration. We can see that the inferred speciation divergence in each case 
corresponds not to the time of the last genetic exchange but to an average over the migration 
period: for high migration, the inferred value tends to be closer to the end of the migration 
period (in forward time), while with low migration, it is closer to the time when it starts. 

 
Figure SF4.2. Effects on inferred speciation time of differing scenarios of ancestral substructure around 
the time of HC speciation. In each plot the x-axis indicates the rate of migration from H to C in units of 
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4Nem, while the y-axis (ʻcoal.tau1ʼ) is a non-bias-corrected inferred parameter corresponding to dHCs / 2, 
in units of mutations per bp. Red boxplots show the results of simulations with clean splits at 2, 4 and 
5.5 My, with no subsequent migration. The upper row shows simulations where the migration rates are 
symmetric between H and C, while the lower row shows simulations where MC->H = 2MH->C. There are 10 
replicates of 1 Mb in each case. 

Fig. SF4.3 shows the effect on inferred ancestral polymorphism θHC (again before bias 
correction.) In these simulations the value simulated for the population prior to migration was 
0.0036; we generally see an increase in inferred θ relative to this. This is in line with 
expectation, and depends on the interaction between the strength of migration and the time 
span of the migration period. 

 
Figure SF4.3. Effects on inferred ancestral polymorphism of differing scenarios of ancestral 
substructure around the time of HC speciation. As Fig. SF4.2, but here the y-axis (ʻcoal.theta1ʼ) is the 
inferred ancestral polymorphism in units of mutations per bp. 

These results show that in conditions of substructure or migration between separated 
populations, CoalHMM’s estimate represents a weighted average, in that when the level of 
gene flow is high its estimate is close to the end of the period, while when low its estimate is 
near the start. 

We note two points in particular. Firstly, the speciation time THC is not inferred to be more 
recent than the time of last genetic exchange between human and chimpanzee, but it may be 
substantially older, depending on the strength of migration. Secondly, we conclude that 
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ancestral gene flow could result in THC estimates more recent than those derived from fossil 
evidence only in a case where strong gene flow caused a recent speciation time estimate but 
did not significantly affect the development of the derived characteristics observed in the 
fossil record. It is possible that genetic factors involved in the formation of a population split 
(perhaps in a parapatric or even sympatric speciation process) could be associated with the 
morphological characteristics evident in fossil analyses while not inhibiting further gene flow 
(Coyne & Orr 2004). 

More generally, the question arises as to what is meant by speciation time in cases where the 
separation of two populations was an extended process. One possibility might be to define 
speciation time as the time of most recent genetic exchange. But this may be impossible to 
determine in practice, for any particular exchange may well have left no detectable signature 
either in present day genetic data or in anatomical characteristics. Moreover it could be 
misleading in cases where there was recent hybridization after a long period of separation. An 
alternative definition might be the time of initial separation, but this may not be meaningful in 
cases where the ancestral population contained longstanding substructure or where the 
separation began slowly and imperceptibly. 

For realistic demographies, we argue that it is reasonable to see speciation time - like 
effective population size - as a model parameter rather than a description of demographic 
reality. It should perhaps be called effective speciation time. Insofar as it is influenced by 
phenomena such as migration and the establishment of geographical, behavioural or other 
reproductive barriers, it represents by a single number the combined effect of diverse 
evolutionary processes. Therefore we suggest that for genetic data a model-based quantity 
like the estimate provided by CoalHMM, which is sensitive to gene flow averaged over time, 
provides a relatively well-defined measure of the time at which two populations separate. 
Although computationally demanding, it is repeatable and well behaved under plausible 
demographic scenarios.  

Ancestral bottlenecks 
We also carried out simulations to investigate the consequences of a bottleneck in the 
ancestral HC population shortly prior to speciation. This would lead to a large amount of 
coalescence at the time of the bottleneck, which would break the assumption in CoalHMM 
that the distribution of coalescent times within the population is exponential. In particular we 
want to know whether this might reduce the inferred speciation time THC substantially, 
perhaps by an amount sufficient to account for the discrepancy in genetic and fossil estimates. 

In order to see reasonable ILS values in such a scenario, it is implicit that the HCG and HC 
speciation times would be closer than without a bottleneck. Our simulations used 
demographic parameters such that the expected ILS fraction with no bottleneck was 50%, 
fixing the time of HC speciation at 5.5 Mya, and HCG speciation at 6.6 Mya, with NHC = 
90,000. Other parameters were as above. A population bottleneck was introduced lasting from 
5.501 Mya to 5.5 Mya, and the bottleneck size was varied: expressed in terms of the ratio of 
population sizes during and before the bottleneck, it took values 1.0 (no bottleneck), 0.9, 0.75, 
0.5, 0.25, 0.1, 0.01, and 0.001. (We did not also vary length as the effects of a bottleneck 
scale with the product of length and size.) Figures SF4.4-6 show the results. 
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Figure SF4.4. Effect of varying bottleneck size (x axis) on true and inferred ILS fraction.  

 
Figure SF4.5. Effect of varying bottleneck size (x axes) on the inferred non-bias-corrected parameter 
coal.tau1 (as in Fig 4.1).  
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Figure SF4.6. Effect of varying bottleneck size on inferred ancestral polymorphism parameter 
coal.theta1.  

As expected, a bottleneck reduces the amount of ILS in the simulated data (Fig. SF4.4), and a 
bottleneck size ≤ 0.01 effectively suppresses ILS. We find that CoalHMM’s inference of ILS 
never differs by more than 10% from the true value. 

Also as suspected, the inferred speciation divergence is affected by a bottleneck (Fig. SF4.5); 
however the effect is quite weak, in that even for a bottleneck of size ≤ 0.01 the average 
reduction is less than 20%. CoalHMM’s inference of speciation time is thus robust to 
variation in the ancestral population size. Instead, as we would hope, the effect of the 
bottleneck is largely captured within the model by the inferred ancestral polymorphism 
parameter (Fig. SF4.5). 

We conclude that, as with ancestral substructure and migration, variation in the ancestral 
population size is unlikely to account for the discrepancy between CoalHMM’s estimates of 
great ape speciation times and older estimates based on fossil evidence. Had there been a 
bottleneck sufficient to bias CoalHMM’s estimate by the required amount (e.g. from 6 Mya to 
4 Mya), it would also result in negligible ILS, whereas in our data (Table ST4.2) CoalHMM 
inferred 30% ILS on the autosomes. 

5. Incomplete lineage sorting, genome-wide selection, and 
recombination 

Neutral ILS simulations 

We can demonstrate that the observed ILS variation (Fig. 2a) is not an artefact of 
CoalHMM’s inference process, and instead reflects genuine variation in the data (e.g. due to 
ancestral selection), by applying CoalHMM to simulations generated under a neutral 
coalescent model with uniform ILS probability. We use population parameters matching 
those inferred by CoalHMM for the great apes, and carry out two sets of 50 simulations of a 1 
Mbp region, one with parameters appropriate for the autosomes and one with parameters 
appropriate for the X chromosome. The results are shown in Fig. SF5.1, along with the 
corresponding distributions of ILS estimated (also in 1 Mbp regions) from the data.  

Leaving aside the issue of model fit between our simulations and the data - the modal values 
are reasonably well matched, it is clear that the range of ILS values found in the data is much 
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greater, and extends to much lower values, particularly on X. We conclude that the data is 
therefore inconsistent with a model of genome-wide neutral evolution. 

 
Figure SF5.1: Frequency distributions of ILS estimated in 1 Mbp windows on the autosomes and on X 
inferred by CoalHMM from great ape data (black) and from simulations of neutral evolution (blue; 
rescaled so that the modal height matches the black curve). 

Correlation of ILS with gene annotations 

ILS suppression around coding genes 
Taking the MASKED alignment dataset, and labelling alleles in human, chimpanzee and 
gorilla as 0 if they match orangutan and 1 otherwise, we considered segregating sites with 
HCG patterns 001, 010, 100, 011, 101 and 110, and counted the number of sites of each 
pattern in 10 kbp windows across the genome. Within each window we calculated nILS = (n101 
+ n011) / h, where h = (n100 + n010 + n001 + 2(n110 + n101 + n011)) / 3. This represents the number 
of ILS sites normalised by the total tree height - the latter serving as a proxy for the local 
mutation rate. We then binned these windows according to their distance from the nearest 
gene transcription start site or stop site (x-axis in main text Fig. 2b; negative distances are 
upstream from a start site). The blue line on Fig. 2b plots the mean value of nILS averaged 
over all windows in each distance bin. 

Suppression of ILS around genes is not an artefact of assembly errors  
A possible concern is that the apparent suppression of ILS sites around genes might be an 
artefact of assembly errors in the sequences compared, if such errors are substantially more 
frequent away from genes, and give rise to elevated measures of ILS. 

If this were the case, we would expect the human sequence to be the outgroup more often 
than chimpanzee when counting apparent ILS sites in these regions, since the human 
assembly is an order of magnitude more accurate than either gorilla or chimpanzee. Fig. 
SF5.2 plots separately the profiles of site counts with HCGO patterns 0110 (human as 
outgroup) and 1010 (chimpanzee as outgroup). We see that ILS is reduced at genes to the 
same extent for both classes of site. 
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Figure SF5.2: Reduction in ILS around protein coding genes, as Fig 2b, showing separately the profiles 
for site counts with HCGO patterns 0110 (human as outgroup) in red and 1010 (chimpanzee as 
outgroup) in blue. 

This is consistent with our expectation of error rates in this dataset based on measures of 
assembly quality. The analysis was carried out on the ‘MASKED’ dataset prepared for the 
CoalHMM analysis, which considers only 1:1:1:1 orthologous EPO alignment blocks and 
excludes RepeatMasked regions, low quality positions in any of the four great ape assemblies 
and 50 bp windows with many gaps (see Section 4 above). In such regions of the gorilla 
sequence, the comparison with finished fosmid sequences (Section 3 above) found an average 
rate of 0.13 single base or short indel errors per kbp. Therefore we would expect 1-2 sequence 
errors per 10kb interval, compared to the 20-30 ILS sites per interval contributing to the 
measure that we have plotted. From a comparison of chimpanzee and human sequence 
divergences from an outgroup, errors in the chimpanzee assembly are also reduced to a 
comparable level in this dataset (Section 4). Meanwhile errors in orangutan will not 
significantly affect the detection of ILS sites, since orangutan is used solely to polarize 
segregating sites in the three hominines. Even the comparison of 1-2 to 20-30 is very 
conservative over the regions of the genome we have considered, since ILS site patterns 
(1010 and 0110) require two pairs of matching alleles across the four genomes, which makes 
it very unlikely for them to be generated by sequencing errors given the error rates indicated 
above unless the errors are highly correlated between species. 

Such correlation could be considered more likely in paralogous regions of the genome (where 
the duplicated sequences are similar but not identical), which could give rise to spurious ILS 
sites if the placing of such regions in the chimpanzee assembly differs from that in human, as 
illustrated in Fig. SF5.3. 

 

 
Figure SF5.3: Paralogous genomic regions can give rise to ILS sites if their placing in the chimpanzee 
assembly differs from that in human (while gorilla matches either of the other two). (Note that not all 
such cases are necessarily due to assembly errors; some may arise from genuine re-ordering events on 
either the human or chimpanzee lineages.)  
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In fact ILS sites generated in this way cannot be responsible for the signal around genes 
observed in Fig. 2b, as they constitute an insufficient fraction of the total number of ILS sites, 
independent of distance from genes. This can be seen by considering sites found in regions of 
the alignment where the human assembly contains a duplication. Table ST5.1 shows counts 
of ILS sites, segregating sites lying in regions annotated in human as genomic duplications 
longer than 1 kbp with duplicates of more than 90% similarity (Bailey et al. 2002), and sites 
in both categories. Firstly, it is clear that at most only 2% of the ILS sites considered are 
found in these duplicated regions, so that even if all such regions were misassembled as in 
Fig. SF5.3, so that all ILS sites found therein were spurious, this would still be insufficient to 
generate the effect shown in Fig. 2b by an order of magnitude. Secondly, although there is a 
slight enrichment of ILS sites in segmentally duplicated regions, such regions are actually 
more frequent closer to genes, meaning that the consequences of this enrichment would 
decrease the effect seen in Figure 2b, rather than contribute to it. A similar correlation of 
segmental duplication with gene content was reported previously by Bailey et al. (2002) and 
Zhang et al. (2004). 

 

 Total sites ILS sites Sites in human 
segdup regions 

ILS sites in human 
segdup regions 

distance from 
nearest gene   % of total   % of total   % of ILS sites 

0-50 kbp 306902 8922 0.29 3093 1.01 186 2.08 
50-100 kbp 36240 1863 0.51 363 1.00 39 2.09 
100-300 kbp 66596 3371 0.51 374 0.56 20 0.59 
> 300 kbp 71497 3705 0.52 343 0.48 12 0.32 
Table ST5.1: Counts of segregating sites in 1:1:1:1 orthologous blocks of the EPO 6-way alignment 
categorised by ILS or segmental duplication status. ILS sites are sites with HCGO pattern 1010 or 0110; 
human segdup regions are regions annotated as duplicated using a whole-genome assembly 
comparison method (Bailey et al. 2002). Analysis was carried out on 1% of all sites within these blocks 
genome-wide at which a mutation segregates human, chimpanzee and gorilla. 

As further support for the proposition that the ILS sites we have considered are not 
substantially contaminated by assembly artefacts in duplicated regions, Fig. SF5.4 shows, at 
ILS sites and at sites supporting the consensus species tree, the distributions of read depth and 
mean mapping quality of covering reads in the alignment of Illumina data for Kamilah to the 
gorilla assembly. (Mapping quality is a measure of the confidence with which a read is 
mapped to a particular genomic location rather than to the most likely alternative, and is 
therefore expected to be lower for reads mapping to duplicated regions or other areas where 
the assembly is uncertain.) If ILS sites were significantly enriched for duplicated genomic 
positions, we would expect the depth distribution at such sites to be wider, and the mapping 
quality distribution to show greater density at lower qualities. As can be seen in Fig. SF5.4, 
the distributions are almost indistinguishable. 
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Figure SF5.4: Distribution of depth and mean mapping quality of covering reads in gorilla at ILS sites 
(red) and sites supporting the consensus tree (black). (Analysis based on 10% of total sites genome-
wide.) 

 

Recombination rates inferred by CoalHMM 

Lineages separated by a recombination event will eventually re-coalesce. This happens at the 
same coalescence rate as other coalescence events, so that looking backwards in time, the 
probability that lineages will have re-coalesced after time t is 1 - exp(-t/(2*Ne*tgen)) where tgen 
is the generation time and Ne is the effective population size. Fig. SF5.4 shows this 
probability as a function of t for three different values of Ne, with tgen = 20 years. For example 
after one million years only 8% of recombinations avoid re-coalescence with Ne = 10,000 
whereas with Ne = 30,000, 43% remain. After three million years, even with Ne = 30,000 only 
8% will not have re-coalesced, and since this would be a high estimate for the human and 
chimpanzee effective population sizes, we therefore expect that almost all recombination 
events happening on either lineage within the last million years will have re-coalesced before 
the time of the human-chimpanzee ancestral species. The recombination events we can infer 
with CoalHMM are therefore expected to have occurred in the ancestral species, or shortly 
after the speciation event, and not close to the present day. 
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Figure SF5.4: Probability of lineages remaining unlinked. 

 
Figure SF5.5: Genome-wide correlation between estimated and present-day human recombination 
rates. Each point plots the estimated recombination rate in the HCGO alignment and the average rate 
estimated by REF in a 1 Mbp region. The red line represents a significant correlation (R = 0.49; p<10-13). 

6. Male mutation bias 
At any genetic locus x, the expected amount of ILS between human, chimpanzee and gorilla 
and sequence divergence between human and chimpanzee can be written as:  

ILS(x) = (2/3)exp(-(THCG – THC) / (2Ne(x)tgen)) (1) 

dHC(x) = 2µ(x)(THC + 2Ne(x)tgen) (2) 

where THCG – THC is the time between the gorilla and chimpanzee speciation events,, tgen is the 
generation time, Ne(x) is the effective population size of the ancestral HC population at that 
locus, and µ(x) the average mutation rate on the lineages connecting H and C. (Both the 
ancestral effective populations size Ne and the local mutation rate can vary with x.)  
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The following argument shows how we can use CoalHMM’s inference of ancestral Ne to 
estimate the difference in mutation rate between X and the autosomes – and hence between 
males and females. 

We express (2) as 

dHC(x) = dHCs(x) + θHC(x) 

where dHCs(x) = 2µ(x)THC and θHC(x) = 4µ(x)Ne(x)tgen are the components of sequence 
divergence associated with speciation and ancestral coalescence respectively. The CoalHMM 
model enables us to estimate values for both components of divergence at any position in the 
five-way alignment. In particular, we can estimate the average autosomal and X-
chromosomal speciation divergences dHCs(A) and dHCs(X). 

If we assume that the X and autosomal mutation rates differ only on account of their differing 
modes of inheritance (so that, e.g., while in females the X chromosome experiences the same 
average mutation rate as an autosome), it is straightforward to show that 

µ(X) = (2 + α)µf / 3 

µ(A) = (1 + α)µf / 2 

where α = µm/µf, with µm the average mutation rate experienced by a genetic locus in males 
and µf the average rate in females.  

Then 

dHCs(X) / dHCs(A) = 2µ(X)THC / (2µ(A)THC) = µ(X) / µ(A) = (4 + 2α) / (3 + 3α) 

Hence 

α = (4 – 3dHCs(X) / dHCs(A)) / (3dHCs(X) / dHCs(A) – 2) 

For the HC comparison in our data (Table ST4.2), using the MASKED dataset we find 
dHCs(A)/dHCs(X) = 0.87 ± 0.08, corresponding to a male/female mutation rate bias estimate of 
α = 2.3 ± 0.4. (With the FULL dataset we get α = 2.6 ± 0.2; not significantly different). 

For the HCG comparison, dHCGs(A)/dHCGs(X) = 0.865 ± 0.09.  

Figure SF6.1: Genome-wide variation in sequence divergence. Each vertical line represents the 
sequence divergence between human and chimpanzee (blue), human and gorilla (green) and human 
and orangutan (red), estimated in a 1 Mbp region. 
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7. Sequence losses and gains within the African apes 
We looked for examples of sequence loss or gain within the gorilla, human and chimpanzee 
lineages by comparing the assemblies, augmented by raw sequence data for each genus. For 
the latter we used one library of Illumina data at 4x from Kamilah for gorilla, we combined 
data for a female chimpanzee and a male bonobo to give us 2.5x data representing the Pan 
genus, and we used reads at 7x for NA12878, a human CEU female, from the 1000 Genomes 
project (1000GenomesProjectConsortium 2010). 

Using the alignment program bwa (Li and Durbin 2010) we mapped the data for each genus 
to three reference assemblies: the reference used for the 1000 Genomes Project (based on 
ncbi37), the gorilla assembly presented here, and the chimpanzee reference version 2.1. 
Because repeats in any assembly are particularly sensitive to the assembly method used, we 
excluded all repetitive material as identified in each reference by RepeatMasker and 
DustMasker. Hits on the Y chromosome in the human or chimpanzee references were also 
excluded. (Y is treated separately below.) 

In each reference, regions were defined according to their coverage by reads from each of the 
other two genera. For example, on the gorilla reference, regions were covered either by 
human reads only, by chimpanzee reads only, or by both. We then excluded all fragments in 
each reference covered by reads from both other genera. From the remaining material, 
fragments longer than 100 bp were realigned to each of the three references. If an alignment 
was found then we identified the material which aligned and re-classified it accordingly. This 
compensated for the low coverage of the Pan data – some material initially classified as not 
covered by Pan was in fact found in the chimpanzee reference at this stage. 

The resulting total amounts of non-repeat-masked material found in only one or two of the 
three species (either in the corresponding reference assemblies or sequence data) are shown in 
Table ST7.1. This material was then compared to the NCBI RefSeq DNA database using 
BLAST. Of material found only in the chimpanzee assembly, 43% was not found in any other 
organism, either indicating a greater incidence of novel material on the chimpanzee lineage or 
perhaps assembly contamination. 

Species in which material 
is found Quantity Distribution of BLAST hit locations (%) 

 (Mbp) orangutan Other primate Non-primate None 
Human only 0.572 80 14 <1 6 
Chimpanzee only 0.528 36 15 <1 43* 
Gorilla only 1.255 72 14 0 14** 
Human & chimpanzee 2.685 80 15 <1 5 
Human & gorilla 5.533 81 16 <1 3 
Chimpanzee & gorilla 5.562 80 14 <1 6 
 Table ST7.1: Non-repetitive material found in only one or two of the African great ape genomes, 
identified in reference assemblies and sequence data, and the distribution of BLAST hit locations for 
material in each category (excluding hits to the source genome(s)). * Of this (chimpanzee-only material 
with no hits to other organisms), 38% was from Unplaced reference sequences. ** Of this (gorilla-only 
material with no hits to other organisms), 47% was from Unplaced reference sequences. 

Chromosome Gene Name EnsEMBL ID Protein function 
4 C4orf39 ENSG00000250486 uncharacterised 
9 LCN10 ENSG00000187922 possible role in male fertility 
12 OR6C76 ENSG00000185821 olfactory receptor 
19 OR1M1 ENSG00000170929 olfactory receptor 
19 OR7G2 ENSG00000170923 olfactory receptor 
21 KRTAP13-3 ENSG00000240432 hair keratin associated protein 
Table ST7.2: Human Ensembl protein coding genes with exons overlapping material identified as 
unique to human within hominines.  
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Chromosome Gene Name EnsEMBL ID supporting evidence  
1 - ENSGGOG00000012254 mouse olfactory receptor protein 
2a - ENSGGOG00000027212 human interleukin protein 
7 - ENSGGOG00000022569 mouse olfactory receptor protein 
11 - ENSGGOG00000002303 mouse olfactory receptor protein 
12 - ENSGGOG00000025467 human Ret finger protein 
unplaced16310 - ENSGGOG00000023676 human olfactory receptor protein 
unplaced2230 - ENSGGOG00000011802 mouse olfactory receptor protein 
unplaced28373 - ENSGGOG00000011678 mouse olfactory receptor protein 
unplaced37942 - ENSGGOG00000022189 mouse olfactory receptor protein 
Table ST7.3: Gorilla Ensembl protein coding genes with exons overlapping material identified as unique 
to gorilla within hominines. No direct functional annotation exists for these genes; the rightmost column 
gives the functional association of the (human or mouse) protein from which the gorilla gene annotation 
was derived. 

 
Chromosome Gene Name EnsEMBL ID supporting evidence  
12 - ENSPTRG00000029746 human olfactory receptor protein 
16 XM_001170014.1 ENSPTRG00000034534 human uncharacterized protein 
17_random XR_021206.1 ENSPTRG00000034053 human uncharacterized protein 
Un XR_020170.1 ENSPTRG00000031405 human olfactory receptor protein 
Un C11orf89 ENSPTRG00000031380 human uncharacterized protein 
Table ST7.4: Chimpanzee Ensembl protein coding genes with exons overlapping material identified as 
unique to chimpanzee within hominines. No direct functional annotation exists for these genes; the 
rightmost column gives the functional association of the (human) protein from which the chimpanzee 
gene annotation was derived. 

Y chromosome 

We carried out an analysis of the coverage depth on human Y of reads from the male gorillas 
Kwanza and Mukisi, the male bonobo and data from the 1000 Genomes Project for a human 
CEU individual NA10851 with similar coverage to the Kwanza data. The data for each 
individual was aligned to the whole human reference using bwa, and depth on the Y 
chromosome calculated in bins of width 10kb. Additionally, we calculated a repeat-mask 
corrected depth in each bin, excluding repeat-masked bases (and reducing the bin size 
accordingly when calculating the average depth). 



Scally et.al - Supplementary Information 32 

 
 

 

 

 

 



Scally et.al - Supplementary Information 33 

 
Figure SF7.1: Depth of coverage on human Y of Illumina reads sequenced from two male gorillas, a 
male bonobo, and a male human, calculated in 10kb bins. In each bin we indicate the average depth 
(grey) and the average depth corrected for repeat-masked material (black, or colour coded in regions of 
human protein coding genes in accordance with the sequence classes described in Skaletsky et al. 
2003 (Skaletsky, Kuroda-Kawaguchi et al. 2003). Only the first 30Mb of the human Y chromosome is 
shown (the remainder primarily comprising highly repetitive heterochromatic material). Horizontal dotted 
lines show the mean (upper line) and repeat mask corrected (lower line) autosomal depth. Note that on 
the human reference the region around the centromere (between about 10 and 13Mb) is masked out, as 
is the pseudo-autosomal region (up to about 2.5Mb). 

Since there is only a single copy of the Y chromosome in any male individual we expect half 
the mean autosomal depth on the Y; this is indeed the case in the human male CEU individual 
(Fig. SF7.1). For comparison, Fig. SF7.2 shows the same analysis on a female human YRI 
individual NA18523 (again data from the 1000 Genomes Project) and the female Western 
gorilla Kamilah. After correcting for repeats, very few reads from either individual align to 
the human Y other than in the X-transposed region (coordinates 3-6 Mbp) and around the 
centromere. (In particular, for example, there is no coverage over the sex-determining gene 
SRY - the leftmost red-coloured gene.) Females carry two copies of the region on 
chromosome X which is homologous to the X-transposed region on the male Y, so we expect 
reads from these copies to be distributed between both the X and Y regions at half the 
autosomal depth on each (since the reference contains this material on both X and Y).  
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Figure S7.2: Depth of coverage on human Y of Illumina reads sequenced from a female human and 
Kamilah, a female gorilla. See Fig. SF7.1. 

Fig. SL7.1 reveals clear gorilla-human and bonobo-human structural differences. Some 
regions of the human reference appear to be absent in both gorilla and bonobo; elsewhere the 
pattern of coverage differs. Additionally, some regions in the ampliconic region seem to be 
present at greater copy number than in the human reference. On both gorilla and bonobo we 
observe about one quarter coverage in the X-transposed region, consistent with this region 
being absent from Y in both species. Since this region is highly homologous with the 
corresponding region of the X chromosome, a male gorilla or bonobo will have just a single 
copy of this region (on X), but reads from these regions will align to the human reference in 
both the X and Y homologous regions, reducing the coverage from 1/2 to 1/4 of the mean 
autosomal coverage. 

For each of the protein coding genes on human Y we determined the average depth of reads 
mapping to exonic regions within the gene. In Table ST7.5 we list those genes whose exon 
depth is less than 70% of the expected value. 

 
Individual X-degenerate Ampliconic X-transposed Other 
Kwanza CYorf15B VCY, DAZ, TSPY

  
TGIF2LY, PCDH11Y  AC006156.1, 

AC134878.1 
bonobo1  HSFY, RBMY, DAZ, 

TSPY 
TGIF2LY, PCDH11Y AC007241.1, 

AC009235.1 
Table ST7.5: Genes on human MSY whose exon coverage in Kwanza and bonobo1 is less than 70% of 
that expected if present at the same copy number as human. CYorf15B: reported as disrupted in 
chimpanzee and considered not essential in primates by Hughes et al. (Hughes, Skaletsky et al. 
2010)and Goto et al. (Goto, Peng et al. 2009); PCDH11Y, TGIF2LY: Transposed from the X to the 
human Y after the split from chimpanzees (Page, Harper et al. 1984); TSPY: Multicopy gene which 
expanded on the human lineage (Xue and Tyler-Smith 2011); DAZ: Four copies in most humans, two in 
gorillas (Yu, Lin et al. 2008) 
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8. Protein evolution in the great apes 
Identifying primate one-to-one orthologous genes 

All ortholog sets, gene trees, and coding alignments were collected from Ensembl Compara 
release 60 using the Ensembl Perl API (Vilella, Severin et al. 2009; Flicek, Amode et al. 
2011). We first identified the set of genes sharing 1-to-1 orthology among all six primates by 
collecting homology annotations from the Enesmbl Compara database. For each human 
protein-coding gene, the orthology status for each non-human species was assigned to 
different categories based on the homologue count and the Ensembl homology annotation: 
one-to-one (one homologue available and either an ortholog_one2one or 
apparent_ortholog_one2one annotation), deleted (no homologue available), duplicated 
(multiple homologues available), or human duplication (one homologue available but 
containing an ortholog_one2many annotation, indicating that there are multiple human 
homologs for a single non-human homolog). A table containing the primate orthology status 
and Ensembl protein IDs for all genes analysed is included in the supplementary file (Table 
ST8.1). From an initial set of 20,746 human protein-coding genes, this procedure identified 
12,652 genes with 6-way 1-to-1 orthology, 4,809 genes with primate deletions, 1,171 genes 
with primate duplications, 308 genes with human duplications, and 1,806 genes with mixed 
patterns of duplication and deletion (Fig. SF8.1A). 

 

 
Figure SF8.1: Orthology assignments for human genes based on the Ensembl Compara v60 
homology pipeline. A, 20,746 human genes were assessed for orthology relationships in six primates 
and assigned to one of five categories. The 12,652 one-to-one genes were used for subsequent 
evolutionary analysis. B, Venn diagrams showing parallel and lineage-specific deletions in 5,784 genes 
with at least one primate deletion relative to human and parallel and lineage-specific duplications in 977 
genes with at least one primate duplication relative to human. Deletions and Duplications not shown by 
the approximate Venn diagram topologies are included in grey. 

 

We further analysed the overlap of deleted and duplicated genes in four of the five non-
human primates, revealing that roughly half of all genes with at least one Ensembl-annotated 
primate deletion relative to human had deletions in more than one species (2,782), while only 
50 duplications were shared (Fig. SF8.1B). The relative numbers of deletions were largely 
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consistent with each species’ phylogenetic distance from human: chimpanzees had 2,279 
deletions, gorilla had 2,344, orangutan had 3,050, macaque had 3,015, and marmoset had 
3,215. A similar phylogenetic trend was observed for duplication counts, except for a notable 
excess of gorilla duplications: 273 duplications in gorilla compared to 74 in chimpanzee, 165 
in orangutan, 522 in macaque, and 711 in marmoset. 

While the Ensembl homology database is likely to be fairly reliable in its classification 1-to-1 
orthologous genes, there are many possible sources of error in the identification of species-
specific gene duplications and deletions: errors in genome assembly, annotation, alignment, 
and gene tree inference can all contribute to false positive or false negative duplications or 
deletions relative to human. The trend towards greater numbers of deletions and duplications 
with increasing phylogenetic distance to human can be taken as some indication that many of 
the predicted events are true, but the highly variable nature of primate genome sequence, 
assembly and annotation quality makes it difficult to overstate the potential error contained 
within Ensembl’s homology identifications. For example, while it would be tempting to 
speculate that the large number of human genes duplicated in gorilla is due to an 
exceptionally large amount of duplicated gene-coding material in gorilla, it is likely an 
artefact attributable to the homology pipeline’s gene tree inference step being based on an all-
to-all BLAST search and clustering procedure that uses protein sequences derived from each 
source genome’s gene annotations. Since the gene annotations of most primate genomes are 
guided by homology to the human genome, genomic assembly gaps or breakpoints within 
regions syntenic to human genes can cause a single non-human gene to be annotated as two 
separate truncated genes related by an apparent recent duplication event. Given the otherwise 
highly regular pattern of increased duplication count with increasing phylogenetic distance 
from human, one may reasonably predict that the elevated number of Ensembl-annotated 
gorilla duplications will be reduced to a number between that of chimpanzee and orangutan in 
future releases as the Ensembl gorilla gene annotation set is further refined. 

Collecting and filtering six-way codon alignments for one-to-one genes 

Codon alignments of all 1-to-1 orthologous genes were collected from Ensembl’s 6-way 
primate EPO genomic alignment set. We extracted and concatenated alignment regions 
corresponding to the protein-coding portion of each exon comprising the canonical coding 
transcript of each human gene. The resulting transcript alignment was then flattened to the 
human reference by removing all columns with insertions in non-human primates or deletions 
in the human lineage. Since the EPO alignments are generated on the DNA level and our 
evolutionary analysis was to be performed on the codon level, we cleaned each alignment for 
codon analysis by masking out any triplets containing stop codons or out-of-frame gaps. Of 
the original 12,562 1-to-1 genes identified from the Compara homology annotations, 11,538 
codon alignments were successfully collected. The drop-off in numbers came from 1,024 
genes which were discarded because an entire species was missing from the 6-way EPO 
alignments; the species most often missing in the alignments were orangutan (520 genes), 
marmoset (475), and macaque (328). 

The low levels of divergence between the primate species being analysed made it extremely 
important to avoid the inclusion of any incorrectly-aligned material. The expected number of 
lineage-specific substitutions per gene scales linearly with the terminal branch length, 
meaning a small number of sequencing, assembly or alignment errors causing apparent non-
synonymous mutations along one of the short HCG terminal lineages could easily lead to a 
false positive inference of accelerated evolution. As such, we applied an aggressive set of 
filters to each alignment before the evolutionary analysis. First we filtered the chimpanzee, 
orangutan, macaque and marmoset sequences using PHRED or PHRED-like quality scores 
downloaded from the UCSC (chimpanzee and macaque) or WUSTL (orangutan and 
marmoset) websites, replacing any bases with a quality score lower than 30 (corresponding to 
an expected error rate of greater than 1 in 1000 bases) with Ns. We then applied a filter based 
on a sliding-window analysis of maximum-likelihood inferred lineage-specific substitutions 
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as follows. The codon alignment was analysed with the codeml program of PAML v4.14 
using a M0 model in order to infer substitutions in the terminal lineages. Using the branch 
lengths and substitutions inferred by codeml, we analysed the density of codons containing 
lineage-specific non-synonymous substitutions within 15-codon windows starting at each 
position of the alignment. The DNA sequence within any window containing more than 10 
non-synonymous substitutions per codon per unit of branch length was masked with Ns. A 
number of heuristic corrections were made to avoid excess stringency or lenience: branch 
lengths below 0.05 were set to 0.05 in order to avoid too small of a denominator, the 
threshold was decreased from 10 to 5 for any windows overlapping alignment gaps or 
ambiguous nucleotides, and codons containing two or three nucleotide substitutions along one 
branch were counted as two non-synonymous substitutions. This procedure resulted in 72,729 
nucleotides being masked from 1,156 alignments, with the following breakdown of numbers 
of genes in which each species had at least one nucleotide masked: 12 human, 195 
chimpanzee, 232 gorilla, 296 orangutan, 271 macaque and 324 marmoset. 

The low number of genes from which any human sequence was masked indicates that the 
filtering was not overly conservative, while the high numbers in non-human primates 
indicates that those genomes are more likely to contain highly localized, apparently spurious 
runs of non-synonymous mutations in regions of EPO alignments corresponding to human 
transcripts. This could either be due to lower-quality genome assembly (causing spurious runs 
of misplaced sequence to end up in the alignment), errors in the EPO alignments, or 
pseudogenization events causing a lack of functional constraint and increased numbers of 
apparent non-synonymous substitutions. To investigate the possibility that the highly-masked 
genes were enriched for nonfunctional mutations due to pseudogenization, we analyzed the 
set of highly-masked genes for functional enrichments using the GO enrichment methodology 
described below, using the 97 genes where the number of masked nucleotides divided by the 
alignment length was greater than 0.2 as the set of ‘significant’ genes. The results (data not 
shown) revealed a small number of enriched GO terms indicative of gene functions known to 
be prone to pseudogenization, including positive regulation of transferase activity, receptor 
metabolic process, and microtubule cytoskeleton organization (Zhang, Carriero et al. 2004). 
Those three terms comprised only 27 genes, suggesting that pseudogenes may be present in 
our codon alignments, but that pseudogenization is not likely a major contributor to the 
excess of clusters of nonhuman non-synonymous substitutions in our dataset. 

One final filter was applied to avoid a potential bias from substitutions in regions of 
incomplete lineage sorting (ILS) between human, chimpanzee, and gorilla. In the case where 
a synonymous or non-synonymous substitution occurs along the ancestral branch of a 
genomic segment subject to ILS (e.g., where gorilla-chimpanzee or gorilla-human share a 
most recent common ancestry), the assumption of a single phylogenetic tree per gene is 
violated and PAML cannot properly account for the single substitution event. Instead, two 
substitutions must be inferred in order to fit the observed site pattern to the phylogenetic tree. 
The method can choose to infer either two identical substitutions, one along each of the 
terminal ILS branches sharing the most recent common ancestor, or one substitution along the 
HCG ancestral branch and a second reversion substitution along the non-ILS terminal branch. 
We observed that PAML tends to infer the latter sequence of events, likely due to the large 
branch length between the HCG common ancestor and orangutan making it more likely that a 
substitution took place on that branch. Regardless, given the high proportion of expected sites 
under ILS (roughly 20% within gene regions) and the scarcity of multiple independent 
substitutions at the same site within these closely-related primates, we applied a simple 
filtering method to mask out codons that were likely the result of a single substitution in an 
ancestral ILS lineage. Any codon where either gorilla-human or gorilla-chimpanzee shared a 
codon sequence that was different from both orangutan and the non-ILS species (either 
human or chimpanzee) was considered likely to contain an ancestral ILS substitution. The 
human, chimpanzee and gorilla sequences were all masked with Ns at such codons, causing 
PAML to treat those nucleotides as missing data. This resulted in 7,841 codons being masked 
from 4,340 genes prior to analysis with PAML. Although the ILS masking was relatively 



Scally et.al - Supplementary Information 38 

widespread across genes, its effect on the results was conservative with respect to the number 
of inferred substitutions and likely minimal: the majority of genes (2,605) contained only one 
masked codon, which would be unlikely to seriously degrade an otherwise strong signal of 
acceleration or deceleration. 

Manual identification of alignment or assembly errors 

We identified a few examples of genes with apparent alignment or assembly error that 
escaped the various filtering steps described above. Candidate genes for erroneous alignment 
were chosen on the basis of alignment length, branch LRT, and numbers of nonsynonymous 
and synonymous mutations, and a manual analysis of the alignment was undertaken by 
visually inspecting the codon alignment, locations of inferred substitutions, and the protein-
based alignment of the same gene from v60 of the Ensembl Compara database. Results from 
these manual analyses are included in Table ST8.2. 

● ITPK1, which codes for an inositol triphosphate kinase with 415 amino acids and a 
primate dN/dS of 0.094, showed 28 non-synonymous and 10 synonymous 
substitutions in the chimpanzee lineage and a strong signal for chimpanzee 
acceleration (LRT=26.94). The alignment showed few chimpanzee substitutions in 
the first half of the protein, but a high density of masked chimpanzee nucleotides and 
mixed synonymous and non-synonymous chimpanzee substitutions throughout the 
second half. The substitutions that were not masked by our window-based filter were 
presumably just below the substitution density threshold. We analyzed the alternative 
protein-based alignments from Ensembl Compara, which showed a different 
sequence for the chimpanzee ITPK1 orthologue in the second half of the protein that 
had far fewer mismatches, suggesting that the EPO genomic alignments from which 
our data were generated contained a chimpanzee misalignment in the latter half of the 
protein. 

● POLR2A, which codes for the largest subunit of RNA polymerase II with 1971 
amino acids and a primate dN/dS of 0.043, showed 22 non-synonymous and 70 
synonymous substitutions in the gorilla lineage and a strong signal for gorilla 
acceleration (LRT=81.2). The gene showed a highly conserved pattern across the 
bulk of its length, except for the final 250-300 amino acids which contained a highly 
repetitive sequence and long, dense clusters of substitutions in both gorilla and 
orangutan. The protein-based alignments showed a much cleaner gorilla sequence but 
different stretches of substitutions in the chimpanzee sequence, suggesting that this 
repetitive region is subject to frequent genome assembly and/or alignment error. 

● ATN1 codes for a protein of unknown function which, upon the expansion of a 
trinucleotide repeat within the region, leads to dentatorubral pallidoluysian atrophy, a 
rare neurodegenerative disorder. With 1191 amino acids and a relatively high primate 
dN/dS of 0.339, ATN1 showed 105 non-synonymous and 54 synonymous 
substitutions in gorilla with a strong acceleration signal (LRT=80.24). The gorilla 
substitutions were evenly interspersed along the length of the gene, but noticeably 
absent from the first and last 100 amino acids. Gorilla also showed a long 50-amino 
acid gap before the high-substitution region began. Comparison to Ensembl’s protein-
based alignments did not show a different gorilla sequence; rather, it contained a 
chimpanzee sequence with the same pattern of high numbers of substitutions as 
gorilla. This suggests that there may be a duplicated or pseudogenic version of the 
gene region in recent primates which contains many substitutions relative to the 
functional gene, making it likely that the pattern of gorilla substitutions seen in our 
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ATN1 alignment is not indicative of substitutions acting on a functional ortholog of 
human ATN1. 

● GAS6 codes for a protein thought to be involved in the stimulation of cell 
proliferation with 722 amino acids, has a primate dN/dS of 0.150, and showed 29 
non-synonymous and 8 synonymous gorilla substitutions and a strong signal for 
acceleration (LRT=20.54). Manual analysis of the alignment shows a block of non-
synonymous substitutions in the middle of the gene directly adjacent to a block of 
sites which were masked by our window-based filter. The Compara protein-based 
alignments showed a different gorilla sequence in the region of concern, but a 
qualitatively similar number of differences relative to human, suggesting that either 
(a) the EPO alignment contained an error causing nonhomologous gorilla material to 
become aligned to the other primates in the region of concern, or (b) the exon(s) 
contained within the region of concern are not constitutively expressed in gorilla and 
have been evolving neutrally. Given the extreme density of substitutions and the 
apparent lack of homology to human within the region, the alignment error 
explanation seems more likely. 

 
Two other genes with similarly strong signals of acceleration and numbers of non-
synonymous and synonymous substitutions, SUPT16H and POLR1A, were also manually 
assessed, but no obvious signs of misalignment were found (Table ST8.2). The four genes 
with clear errors were removed from the lists of genes used for the remainder of the analysis. 

Codon model evolutionary analysis 

We used the codeml program from PAML version 4.4c (Yang 2007) to analyse the evolution 
of each primate gene using a series of phylogenetic branch and branch-site models. For each 
model tested, the full length codon alignment was input to codeml along with a phylogenetic 
tree corresponding to the accepted species tree structure (labeled tree, Fig. SF8.2). The 
‘cleandata’ option was set to 0 (e.g., alignment columns containing gaps were included in the 
analysis), and branch lengths inferred by codeml based on the initial M0 model model 
analysis (assuming one dN/dS ratio across the whole tree and alignment) were used as the 
initial branch lengths for all other models tested. Substitution events, inferred by codeml 
based on an M0 analysis of the whole alignment after all filtering was applied, were stored for 
later analysis. Since codeml uses unrooted trees and a reversible evolutionary codon model, 
substitutions along the marmoset branch cannot be distinguished from substitutions along the 
human-chimpanzee-gorilla-orangutan-macaque ancestral stem and are essentially randomly 
placed. This ambiguity should not have an impact on the LRT results described here, but will 
be relevant to the analysis of dN/dS levels using inferred substitution events. 
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Figure SF8.2: Overview of the branch models used for the evolutionary analysis. Left, the same six-
species tree topology was used for all PAML analyses; branch lengths were separately estimated from 
each alignment. Right, the ten branch models used to test for dN/dS acceleration and deceleration. The 
same species order as in the tree on left is applied, with foreground branches in red and background 
branches in grey. Each model was compared to a one-ratio model (not shown) to perform a LRT for 
increased or decreased dN/dS in the foreground branch(es). Models 3 and 4 were included as alternate 
models intended to account for the different in branch lengths between the gorilla and 
chimpanzee/human terminal branches, but models 1 and 2 did not show significant branch length 
related artefacts and were thus used as the source of human and chimpanzee terminal branch LRTs. 

To detect signals of accelerated and decelerated evolution in gorilla and the great apes, we 
first analysed each alignment with a total of 10 branch models of evolution. Each branch 
model separated the phylogenetic tree into two categories of branches (foreground and 
background branches) which were modelled as evolving with separate dN/dS ratios. The 
branch models used here, numbered 1 through 10 in Fig. SF8.2 (with background branches in 
grey and foreground branches in red), were designed to allow for elevated (accelerated) or 
decreased (decelerated) dN/dS ratios in branches of particular interest to the study of African 
ape evolution. We performed a likelihood ratio test (LRT) for each alignment and model by 
comparing the likelihood of the alignment under that branch model to the likelihood of the 
alignment under the simpler M0 model (which assumes a single dN/dS ratio). We call this test 
the branch-LRT to distinguish it from the branch-site LRT, described below. Using the 
branch-LRT results, genes were subdivided into those showing evidence for accelerated or 
decelerated evolution by comparing the estimated foreground and background dN/dS ratio 
parameters from each optimized branch model; genes where the foreground dN/dS was higher 
than the background were categorized as accelerations, and genes where the foreground 
dN/dS was lower than the background were categorized as decelerations. Using this 
categorization, a signed LRT statistic was constructed for each branch-LRT, where 
accelerated genes were assigned positive LRT values and decelerated genes were assigned the 
negative of the LRT value. 

A highly positive signed branch-LRT score contains strong evidence for a lineage-specific 
elevated dN/dS ratio, which could be explained either by positive selection or relaxed 
constraint. To attempt to distinguish the former from the latter, we used the branch-site test in 
PAML to identify genes with significant evidence for positive selection acting along a branch 
or clade. The branch-site test requires a predefined separation of branches into foreground and 
background categories, similar to the branch test. However, the alternative model of the 
branch-site test allows a portion of sites in the alignment to evolve with dN/dS > 1 along a 
specified set of foreground branches, making it specifically tuned towards detecting 
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temporally and spatially localized episodes of positive selection (Nielsen and Yang 1998; 
Yang and Nielsen 2002; Zhang, Nielsen et al. 2005). The branch-site tests were run using 
models 11, 12, 15, 16 and 17 (Fig. SF8.2) to allow for comparison to branch model results 
with the same foreground branches (note that each branch-site model corresponds to the 
branch model with a number ten below it). 

When the null model of evolution in either the branch-LRT or branch-site LRT is true, the 
LRT statistic - measured as twice the difference in log-likelihood between the branch or 
branch-site model and the M0 model - should be distributed according to a chi-squared 
distribution with one degree of freedom (Yang 2007); strictly speaking the branch-site null 
distribution is a 50:50 mixture of point mass 0 and chi-squared with one degree of freedom, 
but the more conservative chi-squared distribution is recommended by the author of PAML to 
guard against violations of model assumptions). P-values for each branch and branch-site 
LRT were thus calculated by comparing the LRT statistic to a chi-squared distribution with 1 
degree of freedom. The method of Benjamini and Hochberg (Benjamin and Hochberg 1995) 
as implemented in the p.adjust function of the R statistical package 
(R_Development_Core_Team 2006) was used to adjust each model’s set of p-values to 
correct for multiple testing by controlling the FDR for each test across all 11,538 genes. 
Signed LRTs and p-values (both raw and adjusted) for the branch tests 1 through 10 
(excluding 3 and 4) and branch-site tests 11 through 17 (excluding 13 and 14) are included in 
Table ST8.5 in columns prefixed with lrt, pval, and pval.adj followed by the branch model. 
Results from the branch models 3 and 4, designed to detect accelerations along the human and 
chimpanzee lineages while correcting for the difference in branch length between the human-
chimpanzee terminal branches and the gorilla terminal branch, were deemed unnecessary and 
discarded. 

A summary of accelerated and decelerated gene counts and the top ten accelerated genes for 
each branch model is included in Table ST8.3, and the complete set of LRT results can be 
found in Table ST8.5. The number of accelerated genes for nearly all branch models was 
slightly greater than the expected number under the null model, suggesting a mild enrichment 
for accelerated genes, but the number of strongly accelerated genes varied widely between 
models. Assuming equivalent amounts of acceleration and deceleration, the expected number 
of accelerations and decelerations with a branch LRT p<0.05 under the null model would be 
roughly 11,538 * 0.05 / 2 = 288 genes. All models showed an excess of accelerated genes, 
with between 300 and 873 genes accelerated at the nominal p < 0.05 threshold. Decelerations, 
on the other hand, were either consistent with the null expectation or slightly depleted, with 
between 151 and 314 decelerations per model. The AGA Stem model showed a notable 
tendency towards lower dN/dS ratios, with the fewest accelerations (300) and most 
decelerations (314) out of all models tested. Looking at strongly accelerated or decelerated 
genes, defined as those with p-values corresponding to an expected FDR < 0.1 after 
Benjamini-Hochberg multiple testing correction, we observed roughly equivalent numbers in 
the three terminal lineage models (human / chimpanzee / gorilla), with between 10-19 strong 
accelerations and between 1-2 strong decelerations. The other models were much more 
variable, possibly due to differences in power resulting from different foreground branch 
lengths, with the AGA Clade model showing many strongly-shifted genes (56 strong 
accelerations and 9 strong decelerations) and the AGA Stem model showing very few (3 
strong accelerations and 1 strong deceleration). The Human-Chimpanzee, Gorilla-Human, 
and Gorilla-Chimpanzee models, designed to detect evidence for parallel accelerations and 
decelerations, showed roughly twice as many strongly accelerated and decelerated genes as 
their terminal-branch counterparts (29-45 strong accelerations and 3-6 strong decelerations), 
as might be expected based on the doubled amount of branch length in the foreground portion 
of the branch model. 
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Gene Ontology enrichments 

Gene ontology (GO) term annotations for the ‘biological process’ category were downloaded 
from v60 of the Ensembl human database (Flicek, Amode et al. 2011) and assigned to the 
branch model results corresponding to each human gene. Three complementary statistical 
methods were used to assign p-values for enrichment of GO terms among (a) the most 
accelerated genes for each branch-LRT performed and (b) genes with evidence of parallel 
acceleration in a pair of species. For lineage-specific accelerations the 95% chi-squared cutoff 
value was used to identify accelerated genes, while parallel accelerations for each species pair 
were identified by genes with a minimum LRT value of 1.5 in both species of interest (more 
detail on the analysis of parallel accelerations is included in the next section). The first test 
was a standard one-tailed Fisher’s Exact Test (FET) applied to the 2x2 contingency table of 
significant / non-significant genes which are annotated / not annotated with a given GO term. 
The second method, implemented in the topGO package for R/Bioconductor, is also based on 
the FET statistic but additionally compensates for the structure of the GO hierarchy by 
iterating through the directed acyclic graph and removing nodes from consideration when 
certain descendant nodes have already shown significant enrichment (Alexa, Rahnenfuhrer et 
al. 2006). The main effect of the topGO algorithm is to identify and remove semantically 
repetitive terms from the set of most significantly enriched results by reducing the p-values of 
terms with more highly-enriched neighbors in the GO hierarchy. The third method accounts 
for any potential gene length bias in the propensity for a gene to yield a significant LRT 
results and is implemented in the goseq package for R/Bioconductor (Young et al. 2010). A 
smoothed probability weighting function (PWF) which predicts the expected proportion of 
significant accelerations given a gene’s length is derived from the genome-wide set of p-
values and gene lengths; the PWF is then used to adjust the identification of significantly 
enriched GO terms to correct for potential over-representation of terms with significantly 
longer mean gene lengths if longer genes are more likely to yield stronger acceleration LRTs. 
Although the goseq package was designed primarily for the functional analysis of RNA-seq 
data (where gene length bias is a widely-acknowledged confounding factor) we observed a 
small but non-negligible impact of gene length on the likelihood of a gene to contain 
significant evidence for acceleration and found it useful to run this additional analysis. 

The results of the GO enrichment analysis are summarized in Table ST8.4. For each branch 
model (or pair of species for parallel accelerations) all terms with a FET over-representation 
p-value below 0.05 and 5 or more significant genes are shown, sorted by their topGO p-value. 
Any topGO or goseq p-values above 0.05 are colored grey instead of black; terms with non-
significant topGO p-values are likely to have a closely-related term with stronger enrichment 
higher in the list, while terms with non-significant goseq p-values may be enriched by the 
FET due to a length bias in the detection of accelerated genes. 

We note that none of the GO term enrichments for any of the tests remained significant at 
FDR<0.1 after Benjamini-Hochberg correction for multiple testing. This indicates that none 
of the branch model accelerations were enriched in GO functional categories at a well-
controlled FDR; however, this lack of ontology-wide significance may be due to a variety of 
factors including the limited power of branch models to detect dN/dS shifts, noise in the GO 
annotation of genes, or the specific choice of LRT cutoffs in identifying significant 
accelerations. Our use of a nominal p<0.05 cutoff for enriched GO terms yielded a limited set 
of enriched terms for each branch model, summarizing the strongest functional associations 
with moderately to strongly accelerated genes. 

Comparison with previous genome-wide evolutionary studies 

A number of studies have previously investigated the prevalence and functional associations 
of positive selection and elevated dN/dS in primates, often using the branch or branch-site 
models implemented in PAML. Although the studies vary in the exact datasets and analytical 
methods used, we compared their main results in order to assess the variability of previously 
published genome-wide results in primates. Table ST8.7 contains a summary of each study 
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including our own analysis for comparison. The proportion of primate accelerations using 
similar branch model methods ranged from 7.07% to 20.24%; our result, which ranged from 
4.64% in chimpanzee to 5.75% in human, is slightly lower than the range of previously-
published values, but not strikingly so. For the proportion of genes experiencing positive 
selection under the branch-site test (or similar tests), our results (ranging from 1.23% in 
human to 1.66% in gorilla) fall within the lower end of the published range of 0.43% to 
8.72%. Most studies do not show a large difference in the proportion of accelerated or 
positively-selected genes between chimpanzees and humans; our results further confirm this 
trend and extend the similarity to gorilla. 

A wide range of biological functions have been associated with accelerated evolution or 
positive selection. Terms involving immune functions, olfaction, and amino acid metabolism 
have commonly been identified in genome-wide scans. Our GO term enrichments based on 
the branch model results did not recover many terms similar to previous studies; this may be 
the result of a different sensitivity in the design of our evolutionary models, where gene 
accelerations in African great ape lineages relative to the primate background rate were 
detected as opposed to high rates of evolution on their own. For example, immune genes with 
high dN/dS ratios across all primates were not likely to be identified as accelerated in this 
study, which could explain the lack of any signal of immune gene enrichment in our results. 

Interestingly, we identified enrichments for ‘sensory perception of sound’ in the gorilla 
lineage and gorilla-human parallel accelerations; although previous studies have detected 
olfaction and visual perception among functional categories enriched in primate accelerated 
genes, we believe this is the first genome-wide analysis to provide evidence for an abundance 
of genes involving sound perception to have been subject to elevated dN/dS ratios in the 
African great apes. We also found some evidence for enrichment of brain-related terms in 
human and gorilla, including brain development (gorilla p=0.038) and nervous system 
development (human p=0.032), although both terms may be subject to a gene length bias and 
fail to reach p<0.05 using the goseq method for GO term enrichment. 

Parallel accelerations in the African great apes 

We used the lineage-specific gene acceleration LRT results to evaluate the prevalence and 
strength of parallel gene accelerations between gorilla and human (GH), gorilla and 
chimpanzee (GC), and chimpanzee and human (CH) during the time period since the 
speciation of each pair. We characterised parallel accelerations on three levels, identifying (1) 
genome-wide levels of shared acceleration, (2) GO terms enriched for shared accelerations, 
and (3) genes with the strongest evidence of parallel accelerations for each species pair. 

Genome-wide rates of shared acceleration 
We first identified a suitable statistic by which to measure parallel gene accelerations. 
Although three of the branch models tested were designed to be sensitive to parallel 
accelerations in the species pairs of interest (models 8, 9, 10 shown in Figure SF8.2) we 
found that many of the most enriched genes for these three models were driven by non-
synonymous substitutions in primarily one of the two species pairs. For example, the gene 
with the highest LRT under the gorilla-human model (model 9), SUPT16H, has a LRT score 
of 51.14. However, it appears that most of this acceleration signal has come from 
substitutions in the gorilla lineage: looking at the lineage-specific human and gorilla LRTs for 
the same gene, we find a gorilla LRT of 61.1 and a human LRT of -1.34 (where a negative 
value indicates an estimated decrease in dN/dS relative to the background branches). Clearly, 
human and gorilla did not both experience accelerated dN/dS levels in SUPT16H, despite the 
strong LRT result from the gorilla-human branch model. 

To ensure that genes identified as undergoing parallel acceleration showed evidence for 
having experienced independent dN/dS shifts at a given strength, we used the minimum of 
both lineages’ independent branch model LRTs (models 1, 2, and 5 in Figure SF8.2 for 
human, chimpanzee and gorilla, respectively) as the statistic for parallel acceleration in each 
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pair of species. This approach may have slightly reduced power to detect accelerations due to 
the presence of the paired species in the background model for each lineage (e.g., when 
detecting gorilla-human parallel accelerations, the human LRT is estimated with gorilla in the 
background model and the gorilla LRT is estimated with human in the background model). If 
the gene is truly accelerated in both lineages, then the presence of an accelerated lineage in 
the background model should reduce the difference in dN/dS levels between the background 
and foreground models. In this case, however, the influence of the AGA terminal lineages on 
the estimated dN/dS of the background model was expected to be small compared to that of 
the orangutan, macaque and marmoset outgroups due to the small fraction of total branch 
length covered by AGA species. 

We used a resampling randomisation strategy to determine whether the number of parallel 
accelerations at a given LRT cutoff threshold was significantly greater than that expected by 
chance. For each iteration of the randomisation, we sampled a new set of accelerated genes 
for each paired species by randomly choosing N genes (where N is the number of observed 
lineage-specific accelerations for each species at the given cutoff threshold) from among the 
11,534 genes in the dataset. We then counted the number of overlapping accelerations at each 
iteration, and the fraction of iterations which yielded a greater number of overlapping 
accelerations than the observed number of parallel accelerations was taken as the p-value for 
the significance of the observed count at the given cutoff threshold. This was repeated for 
each species pair and for cutoff thresholds ranging from 0 to 5. 

We also estimated the magnitude of over- or under-representation of parallel accelerations by 
calculating the co-occurrence excess (defined as observed score / expected score - 1) of 
accelerated genes for each pair of species and cutoff thresholds ranging from 0 to 5. We 
calculated the expected number of parallel accelerations sing the same null expectation as the 
randomisation test (namely, that each lineage has a characteristic proportion of accelerated 
genes at a given threshold and that each gene is equally likely to be accelerated). For each 
species pair and cutoff threshold, one hundred bootstrap replicate datasets were sampled from 
the 11,534 genes and the co-occurrence excess was calculated for each replicate to generate a 
distribution of co-occurrence excess values. 

The results of the randomisation test and co-occurrence calculations are shown in Figure 
SF8.3. The co-occurrence excess is plotted as a function of the LRT cutoff threshold for each 
species pair, with a solid line drawn at the co-occurrence value and a shaded area drawn 
around the 50% bootstrap confidence interval. The results of the randomisation test are 
signified by one or two stars drawn adjacent to the co-occurrence value for the given dataset: 
a single grey star was drawn for datasets with nominal p < 0.1, a single black star for p < 
0.05, and two black stars for p < 0.01. For reference, a dotted vertical line is drawn at the LRT 
cutoff corresponding to a nominal chi-squared p<0.05 cutoff for lineage-specific acceleration. 
At lower (i.e. more lenient) LRT cutoff values more genes in each of the paired species are 
accelerated, and at higher (i.e. more stringent) LRT cutoff values fewer genes are accelerated; 
this can be seen in the wider confidence intervals and larger amounts of apparent stochastic 
noise at higher LRT cutoffs. 
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Figure SF8.3. Excess parallel accelerations in pairs of African great apes at various LRT cutoffs. 
Parallel gene accelerations in three pairs of African great ape lineages (Gorilla-Chimpanzee, red; 
Gorilla-Human, green; Human-Chimpanzee, blue) were identified using branch model LRT cutoffs from 
0 to 5 (x-axis; see text for details on how parallel accelerations were identified), and the co-occurrence 
excess between lineage-specific and parallel accelerations at each LRT cutoff was calculated (y-axis; 
the 50% bootstrap confidence interval is shaded). A randomisation procedure was used to identify 
significant enrichment for parallel accelerations: two black stars indicate p < 0.01, one black star 
indicates p < 0.05, and one grey star indicates p < 0.1 for the given species pair and LRT cutoff. A 
vertical dotted line indicates the LRT cutoff corresponding to the 95% chi-squared critical value. 

A trend is clear when comparing the co-occurrence excess levels and randomisation test p-
values between the GH, GC and HC species pairs: HC shows the largest excess of parallel 
accelerations, GH shows an intermediate amount of excess, and GC shows the smallest 
excess. This trend is consistent across a wide range of threshold cutoff values and is 
supported by both the co-occurrence excess values and the randomisation tests. The HC 
species pair shows randomisation p-values below 0.01 for all but the two highest (i.e., most 
stringent) threshold cutoffs and a maximum co-occurrence excess of nearly 60%. The GH 
species pair shows significantly enriched acceleration overlap at p < 0.05 for threshold cutoffs 
below 2 and at 3.84, 4 and 4.5; the co-occurrence excess was noticeably lower than that of 
CH, but above zero for all but one threshold cutoff. The GC species pair showed little 
evidence of genome-wide enrichment for parallel accelerations, with a significant overlap 
only at weak threshold cutoffs of 0.5 or below and a co-occurrence excess hovering around 
zero across the range of cutoff thresholds. 

That the HC pair shows the largest number of overlapping accelerations is not entirely 
surprising, as they share the most recent speciation event among the three species pairs and 
thus presumably share the greatest number of genomic, environmental and behavioral traits 
that might cause a gene to experience increased non-synonymous mutations in both lineages. 
More interesting is the difference in overlap levels between the GC and GH species pairs. 
Whereas the GC pair showed little genome-wide evidence for excess parallel acceleration, the 
GH pair showed a slight but consistent signal for more parallel accelerations than expected by 
chance. This could be due either to a greater degree of biological or environmental similarity 
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in GH compared to GC or to some underlying bias in the data, such as differences in 
population size or genome quality between human and chimpanzee. 

GO terms enriched in shared accelerations 
We used the same methodology applied in the previous section towards identifying GO terms 
enriched in gorilla, human and chimpanzee lineage-specific accelerations to identify terms 
enriched in parallel accelerations for the three species pairs of interest. For parallel 
accelerations, however, genes where each species had a LRT of at least 1.5 were considered 
significant; this more lenient threshold was used since few genes were independently 
accelerated at the 95% chi-squared threshold of 3.84 in both lineages (25 genes for GC, 40 for 
GH, and 51 for HC). At a LRT threshold of 1.5 the GC pair yielded 206 accelerated genes, 
GH yielded 238, and HC yielded 286. The GO terms most enriched in parallel accelerations 
for each species pair are included in Table ST8.4. 

Although no species pair yielded GO terms significantly enriched after correction for multiple 
testing, a number of terms were enriched at a nominal p < 0.05 significance using Fisher’s 
exact test. The top three terms for HC parallel accelerations were neuropeptide signaling 
pathway, regulation of DNA-dependent transcription and microtubule-based movement; for 
GC parallel accelerations, protein autophosphorylation, inner ear development and positive 
regulation of transcription factor activity; and for GH parallel accelerations, Wnt receptor 
signaling pathway, sensory perception of sound and skeletal system morphogenesis. 

Interestingly, the term sensory perception of sound was enriched at p<0.05 (Fisher p-value) in 
all three species pairs, though only three genes (LOXHD1, CDH23, GPR98) were significant 
at LRT > 1.5 in all three pairs -- in other words, all other significant genes were unique to 
each species pair. The sound perception genes uniquely significant in the GH pair were 
EYA1, USH1C, MYO3A and SLC1AC; for the GC pair OTOF and FZD4; and for the HC 
pair DIAPH1, MYCBPAP and DFNB31. This suggests that the tendency of genes involved in 
sound perception to experience mild to moderately elevated dN/dS levels is relatively 
widespread in all three African great apes, with variation in the specific genes having 
undergone acceleration in each species or species pair. It is also worth noting that the 
enrichment for this term among parallel accelerated genes was strongest in the GH species 
pair, where it retained p < 0.05 in both the topGO and goseq tests. In both the GC and HC 
species pairs the term had p > 0.05 for those tests, indicating that human and gorilla share a 
slightly stronger signal for parallel accelerated evolution in hearing genes than do the other 
possible pairs of African great apes. 

Top parallel accelerated genes 
Using the same statistic for parallel acceleration as used for the genome-wide analysis and 
GO enrichments, we identified the top parallel accelerated genes for each species pair and for 
all three species. These genes are listed in Table ST8.3B below the top lineage-specific 
accelerated genes. Among the top genes accelerated across all three lineages are LOXHD1, a 
gene comprised of PLAT domains recently shown to be necessary for auditory hair cell 
function (Edvarson et al. 2011), ITIH3, a plasma serine protease inhibitor potentially involved 
in prevention of tumor metastasis and associated with risk of myocardial infarction (Ebana et 
al. 2007), and PARP3, a member of the ADP ribosyl transferase family which has recently 
been characterized as playing a role in telomeric stability, response to DNA damage, and 
neural crest development (Rouleau et al. 2011, Boehler et al. 2011). The molecular and 
medical evidence for the functional activity of these genes suggests that the elevated dN/dS 
levels across all three African great apes are not well explained by a substantial loss of 
functional constraint; other possible causes might be relaxed evolutionary constraint due to a 
lower recent effective population size or positive selection due to functional adaptation, or 
some combination of the two. Continued study of the evolution of these candidate parallel 
accelerated genes, particularly with attention paid to the recent population structure of the 
African great ape species, will further elucidate the shared and unique behavioral and 
environmental features of our species and our closest evolutionary neighbours. 
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Assessing levels of incomplete lineage sorting within and near genes 

The close proximity of the H-C and HC-G speciation events makes ILS a prominent feature 
of the genomic relationship between human, chimpanzee and gorilla. Regions showing ILS 
should not be subject to any particular functional constraint, but the effective population size 
in the great ape ancestor is expected to affect the prevalence of ILS, causing less ILS in 
regions of lower ancestral effective population size (Hobolth, Dutheil et al. 2011). Strong 
purifying selection on genes tends to reduce the effective population size within and nearby 
exonic regions, so we sought to characterize the effect of the strength of purifying selection, 
as measured by the primate dN/dS ratio, on the prevalence of ILS within and around protein-
coding regions. 

We first looked at patterns of ILS density within protein-coding genes. We separated the 
11,538 one-to-one genes into five equally-sized dN/dS bins, using the dN/dS ratios estimated 
from PAML’s M0 model on the codon alignments. Before performing the ILS masking step, 
each alignment site of each gene was assigned a substitution pattern according to the 
similarity of the human, chimpanzee and gorilla nucleotides to the orangutan nucleotide, 
using a ‘1’ for similarity and a ‘0’ for dissimilarity and concatenating the values in the order 
of human, chimpanzee and gorilla. Thus, a site where human and gorilla match the orangutan 
sequence but chimpanzee is different would be denoted ‘010’. We counted and stored the 
total number of sites with each pattern for each gene, skipping all sites with a gap or 
ambiguous nucleotide in any species. The most important patterns allowing for discrimination 
of ILS versus non-ILS sites were ‘110’ (likely due to a substitution in the human-chimp 
ancestor), ‘101’ (likely due to a substitution in a human-gorilla ILS ancestor), and ‘011’ 
(likely due to a substitution in a chimp-gorilla ILS ancestor). Due to the scarcity of 
substitutions along the short ancestral branch, we identified genes with strong evidence of ILS 
by the presence of more ILS patterns than non-ILS patterns -- specifically, when n_101 + 
n_011 was greater than n_110. A total of 1,974 genes (17.1%) showed evidence of ILS at this 
threshold, which corresponded well with the results of the CoalHMM analysis observing ILS 
at 20% of gene-coding sites. To generate the plot shown in Fig. SF8.4A, we calculated the 
fraction of ILS genes within each dN/dS bin as well as a 95% confidence interval based on 
1000 non-parametric bootstrap replicates, plotting the fraction of ILS genes with the black 
line and showing the 95% confidence interval with each rectangle. This analysis revealed a 
subtle but clear correlation between ILS density and level of purifying constraint, with the 
ILS density ranging from 16% in genes with the lowest dN/dS to 19% in genes with the 
highest dN/dS. This is consistent with the expectation that ILS is depleted from regions 
subject to persistent purifying selection and shows that the overall level of constraint on a 
gene has a detectable, if limited, impact on the effective population size of the coding region. 
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Figure SF8.4. ILS patterns within and surrounding genes. A, Genes were separated into five equally-
sized dN/dS bins and scored for sites showing patterns of ILS. Genes with lower dN/dS values show 
significantly lower amounts of ILS, showing the influence of long-term purifying selection on the 
ancestral effective population size. B, Overlapping 10 kbp windows of primate genomic alignments were 
scored for sites showing patterns of ILS. Windows near protein-coding exons show significantly lower 
amounts of ILS, with the strongest effect in windows adjacent to genes under strong purifying selection. 

We used a similar approach to investigate the effect of gene dN/dS levels on ILS density in 
regions surrounding protein-coding genes. Counts of ILS and non-ILS patterns were collected 
for slices of Ensembl’s 6-way primate EPO alignments corresponding to 10kb windows of the 
human genome spaced at 3.3kb intervals, yielding 470,344 genomic regions. Each region was 
further annotated with the distance from the region’s centre point to the nearest protein-
coding exon (assigning a value of zero if the region’s centre point was within an exon) and 
the identify of the gene containing the nearest exon. Windows were separated into equally-
sized bins according to their distance to the nearest exon (with a separate bin specifically 
added for windows with a distance of zero) and the plot shown in Fig. SF8.4B was generated 
by performing the same ILS density calculation for windows within each bin as described in 
the previous paragraph and plotting the 95% confidence intervals for ILS density in each bin 
with grey bars. A total of 24.8% of windows across all distance bins were classified as having 
evidence of ILS. The same calculations were then repeated for windows whose nearest gene 
was in the lowest 25% quantile (dN/dS < 0.05, blue bars and line) and in the highest 25% 
quantile (dN/dS > 0.24, red bars and line). The effect of background selection on gene-
flanking regions of the genome can be clearly seen in the reduced ILS density in windows 
near to exons; furthermore, this effect scales with the strength of purifying selection on a 
given gene and can be observed in windows further than 100kb from the nearest exon. 

Global dN/dS ratios in primates and ancestral lineages 

The gorilla genome also provided an opportunity to examine global trends in the evolutionary 
dynamics of the African great apes and their ancestral populations. Specifically, we used the 
genome-wide set of highly filtered codon alignments to examine estimated dN/dS levels 
across the six-primate phylogenetic tree. 

Theory predicts that larger populations should exhibit, on average, lower dN/dS values due to 
increased efficacy of purifying selection (Ellegren 2009), and results from several genome-
wide analyses have consistently confirmed this trend 
(ChimpanzeeSequencingandAnalysisConsortium 2005; Lindblad-Toh, Wade et al. 2005; 
Gibbs, Rogers et al. 2007; Kosiol, Vinar et al. 2008; Warren, Hillier et al. 2008). Within 
primates, there exists some disagreement regarding the relative dN/dS of human and 
chimpanzee: Gibbs et al. (Gibbs, Rogers et al. 2007) found a mean dN/dS of 0.175 for 
chimpanzee and 0.169 for humans, while Kosiol et al. (Kosiol, Vinar et al. 2008) found a 
mean dN/dS of 0.245 for chimpanzee and 0.249 for humans. 
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We used the codeml program to estimate genome-wide dN/dS levels for each branch in the 
six-species primate phylogeny from the 11,538 one-to-one alignments. Two genome-wide 
coding alignments were created: an unfiltered alignment was created by concatenating the 
alignment of each gene after sequences were filtered for sequence quality but before the 
window-based filter for clustered non-synonymous substitutions and the filter for ILS-
patterned substitutions were applied, and a filtered alignment was created by concatenating 
the final alignment of each gene that was used for the acceleration analysis. Both alignments 
were 7.263 million amino acids in length. Before being input to codeml, columns containing a 
gap character or ‘N’ in any species were removed. As expected, more columns were removed 
from the filtered alignment due to additional ‘N’s from the window-based masking procedure; 
the final unfiltered alignment contained 5.909 million amino acids and the final filtered 
alignment contained 5.895 mi llion amino acids. A single dN/dS value was first estimated for 
each alignment using codeml’s M0 model, yielding 0.220 for the unfiltered and 0.218 for the 
filtered alignment. Branch-specific dN/dS values (with standard errors) were then estimated 
from each alignment using codeml with the free-ratios model (parameter ‘model=1’). Because 
codeml uses reversible models of evolution and requires unrooted trees as input, any estimates 
of dN/dS on the outermost branch (connecting the H/C/G/O/M ancestor to marmoset) would 
be unreliable; thus, we considered marmoset as an outgroup in this analysis. 

The resulting genome-wide estimates of dS (the number of synonymous substitutions per 
synonymous site) and dN/dS for each branch are given in Table ST8.6 and shown in Fig. 
SF8.5. We find that human has a slightly but significantly higher overall dN/dS than both 
chimpanzee and gorilla (dN/dS=0.256, 0.249, 0.239, respectively) and that orangutan, 
macaque, and the ancestral lineages all have lower overall dN/dS values than the terminal 
branches of the African great apes (ranging from 0.195 for macaque to 0.211 for the human-
chimpanzee ancestor). We note that our results are in strong agreement with equivalent 
estimates from Kosiol et al. (Kosiol, Vinar et al. 2008), who found overall dN/dS values of 
0.249, 0.245, and 0.191 for human, chimpanzee, and macaque, respectively. 

 
Branch label PAML dS filtered 

dN/dS (SE) unfiltered 
dN/dS (SE) % dN/dS change 

(unfiltered vs. filtered) 
Human 0.0057 0.256 0.00248 0.257 0.00248 0.39% 
Chimpanzee 0.0055 0.249 0.00247 0.259 0.0024 4.02% 
H/C ancestor 0.0019 0.211 0.00373 0.212 0.00306 0.47% 
Gorilla 0.0077 0.239 0.00203 0.249 0.00207 4.18% 
H/C/G ancestor 0.0087 0.201 0.00178 0.202 0.00177 0.50% 
Orangutan 0.0160 0.213 0.00132 0.218 0.00134 2.35% 
H/C/G/O ancestor 0.0131 0.203 0.00147 0.203 0.00147 0.00% 
Macaque 0.0324 0.195 0.000887 0.197 0.000888 1.03% 
All* NA 0.218 0.00038 0.220 0.00038 0.92% 
Table ST8.6: Global dN/dS values in five primate species. Estimates were obtained from concatenated 
alignments of one-to-one orthologs from six primate species before (unfiltered) and after (filtered) filters 
were applied for clustered non-synonymous substitutions and patterns of ILS substitutions. The most 
distant aligned species, marmoset, was used as an outgroup. *Numbers for the All branch are based on 
the one-ratio (M0) codon model. 
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Figure SF8.5: Global dN/dS values in five primate species. Genome-wide dN/dS values were obtained 
by analyzing a concatenation of filtered one-to-one orthologous alignments from six primate species with 
codeml using the free-ratios model. Each estimated dN/dS value is plotted as a horizontal line 
surrounded by a grey box corresponding to the codeml error of the estimate. Ancestral lineages are 
labelled with the first characters of their descendant species. 

A comparison of global dN/dS values from the unfiltered versus the filtered alignments in 
Table ST8.6 reveals that the unfiltered alignments generally gave higher dN/dS values, 
though the magnitude of change varied dramatically between lineages. The human lineage 
and all of the ancestral lineages showed less than a 1% decrease in dN/dS, while chimpanzee, 
gorilla, orangutan, and macaque all showed greater than 1% decrease in dN/dS. Since the 
window-based masking procedure was only applied to substitutions in the terminal branches, 
one would not expect the ancestral lineages to experience a significant change in dN/dS; this 
was confirmed by the small magnitude of change in the ancestral branches. Furthermore, the 
smaller magnitude of change in human (0.39%) compared to the other extant primate 
genomes (ranging from 1.03% to 4.18%) indicates that the filtering procedure resulted in the 
removal of far more non-synonymous substitutions from non-human sequences than from 
human. Since the masking procedure was applied equivalently to all terminal lineages in a 
branch-length weighted fashion, the most likely explanation for this discrepancy is that, 
relative to other primate genomes, the human genome contains fewer sequencing or assembly 
errors that led to apparent clusters of non-synonymous mutations in Ensembl’s genomic EPO 
alignments. Interestingly, the magnitude of the dN/dS shift for non-human primate genomes 
appears to correlate negatively with the length of the terminal branch, with a ~4% shift for 
gorilla and chimpanzee, a ~2% shift for orangutan, and a ~1% shift for macaque. This 
observation is consistent with the expected trend if each genome contained a similar number 
of erroneous bases, because the larger number of true substitutions in species with longer 
terminal branch lengths would “dilute out” the signal of elevated dN/dS resulting from 
falsely-aligned bases. In sum, the comparison between filtered and unfiltered dN/dS levels 
strongly validates the use of the window-based substitution filter, showing that the application 
of the filter hardly affected the dN/dS of the finished-quality human genome but resulted in 
branch-length dependent decreases in dN/dS in nonhuman primate genomes with lower-
quality assemblies. Notably, chimpanzee showed a marginally higher dN/dS than human in 
the unfiltered alignment and a significantly lower dN/dS than human in the filtered alignment. 

An additional consideration in the interpretation of global dN/dS values is the fact that genes 
are evolutionarily heterogeneous entities, with each gene composed of sites evolving under 
different amounts of purifying and positive selection due to varying functional and biological 
constraints. Since our estimates of dN/dS were based on a codon model with a constant dN/dS 
value across all sites, they represent the most likely dN/dS value if all sites were evolving 
under the same selective pressure. In some sense they can be considered an ‘average’ dN/dS 
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value resulting from the combination of sites under purifying, nearly-neutral, and positive 
selection into a single alignment. Two problems arise as a result of this averaging across 
genes and sites: first, the comparison of absolute dN/dS values from different studies is 
difficult, since the specific genes chosen for analysis can have a significant impact on the 
overall results (Ellegren 2009). Second, the inclusion of sites with very different selective 
pressures might decrease the signal-to-noise ratio of the data with respect to evaluation of the 
impact of effective population size of different lineages on the efficacy of purifying selection. 
Although population theory predicts (and empirical studies have verified) that purifying 
selection in genes should be more efficient with larger effective population sizes (resulting in 
lower overall dN/dS values), a subset of protein-coding sites may evolve neutrally or under 
positive selection. Neutrally-evolving sites in genes should show no relationship with 
effective population size and positive selection should show the opposite effect, with higher 
dN/dS values in larger populations due to increased efficacy of positive selection (Ellegren 
2009). Although our data show a strong component of the expected signal from purifying 
selection, the concatenation of heterogeneously evolving sites into the same alignment could 
have effected the strength of such a signal. 

To address this issue, we sorted protein-coding sites into bins based on their sitewise selective 
pressures in mammals and separately analyzed the set of sites from each bin. Sitewise 
selection pressures were collected for each site in all of 11,538 genes under investigation by 
applying the Sitewise Likelihood Ratio (SLR) method (Massingham and Goldman 2005) to 
coding alignments of the set of Eutherian mammal orthologous genes from the Ensembl 
Compara database. We used the sitewise likelihood ratio test (LRT) statistic calculated by 
SLR to sort all sites by their level of evidence for non-neutral selection, with strongly 
purifying sites (e.g. with low dN/dS) receiving low values, neutral sites receiving 
intermediate values, and positively-selected sites (with high dN/dS) receiving high values. 
Sites were split into five bins corresponding to the following quartile ranges of the LRT 
statistic: 0 to 0.05, 0.05 to 0.33, 0.33 to 0.67, 0.67 to 0.98, and 0.98 to 1.0. These ranges were 
chosen so that three bins of roughly equal sizes covered the bulk of sites, while two bins 
focused on the 5% most strongly purifying sites and the 2% of sites with strongest evidence 
for positive selection. All sites from each bin were concatenated into one alignment and 
analyzed with codeml as described above. 

Results from the lineage-specific analysis of sites binned by selective pressure are shown in 
Fig. SF8.6, with the human dN/dS for each bin plotted on the x-axis (note the log-scale) and 
the dN/dS of each species relative to human plotted on the y-axis. The 4 lowest dN/dS bins 
showed the same general trends in dN/dS levels as the combined analysis, with human, 
chimpanzee, and gorilla showing the highest dN/dS values, followed by orangutan, and 
finally a cluster of macaque and the ancestral lineages with the lowest dN/dS values. The 
H/C/G/O ancestral lineage appears to have evolved with a slightly lower dN/dS than the other 
ancestral lineages, though this difference is only apparent in the 2nd and 3rd bins. Moving 
from bins with lower human dN/dS to bins with higher human dN/dS, we note a trend across 
all lineages towards increased dN/dS values relative to human. This is consistent with the 
expected decrease in the differential effects of population size in sites subject to weaker 
purifying selection. In the 4th bin, where human has a dN/dS ratio of ~0.55, the cluster of 
ancestral lineages shows nearly the same dN/dS as orangutan, and the human, chimpanzee 
and gorilla values are only marginally distinct from each other. 
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Figure SF8.6: Global dN/dS values in five bins according to selection pressure. Sites were sorted by 
mammalian selection pressure, assigned to one of five bins (more details in text), and concatenated and 
analyzed with codeml using the free-ratios model. Estimates are plotted with the human dN/dS for each 
bin on the x-axis and the lineage-specific dN/dS relative to human on the y-axis. Lines connect 
estimates from each species, and standard errors of the estimates are shown with error bars. Note the 
log scale on the x-axis. 

 
The pattern of dN/dS levels in the highest bin -- representing the top 2% of sites ordered by 
the LRT statistic, and thus the 2% of sites for which evidence of site-specific positive 
selection across Eutherian mammals is greatest -- is distinct from the other 4 bins and 
warrants special mention. The human dN/dS in this bin is ~1.4, confirming that this subset of 
sites does indeed contain a number of sites subject to positive selection. Most of the lineages 
show a continuation in this bin of the general trend of increasingly similar dN/dS estimates 
between lineages, with values clustered between ~88%-95% of the human dN/dS. However, 
the human-chimpanzee ancestral lineage and the orangutan branch show strikingly increased 
(human-chimpanzee) and decreased (orangutan) dN/dS values in the highest bin. Whereas the 
human-chipmanzee branch was at ~85% of the human value in the 4th bin, its value was 
~110% that of human in the highest bin; on the other hand, orangutan went from ~90% in the 
4th bin to ~80% in the highest bin. These two lineages’ strong divergence from the trends 
observed in the other lineages and other bins suggests that some effect other than a difference 
in effective population sizes has caused an increase in human-chimpanzee, and a decrease in 
orangutan, of the prevalence of non-synonymous substitutions in sites with evidence for 
positive selection across Eutherian mammals. One approach to investigating this artefact 
more deeply would be to identify the subset(s) of genes which contribute most strongly to 
these lineages’ deviations from the trend. 

Human-gorilla protein variants 

Variants creating premature stop codons in gorilla  
To evaluate gene loss in gorilla, we used Ensembl’s 6-way primate EPO genomic alignments 
(Build 37, Ensembl 58) to identify mutations that create premature stop codons (stop gained 
consequence) in gorilla compared with human, also requiring there to be no paralogue. After 
manual reassessment we excluded calls made in regions of local misalignment (with ≥ 4 
substitutions and/or indels in the 10 bp sequence surrounding the variant) and genes that had 
2 stop gained mutations less than 10 bp apart and those with ≥ 3 stop gained mutations, as 
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well as cases where there were multiple adjacent nucleotide substitutions in gorilla leading to 
a missense rather than nonsense mutation. Table ST8.8 lists the final set of 90 mutations 
present in 84 gorilla genes. 

Variants associated with disease in humans 
Table ST8.9 lists cases in which a protein variant thought to cause inherited disease in 
humans is the only version found in all three gorillas for which we have genome-wide 
sequence data. Additional capillary (Sanger) sequencing was undertaken to check protein 
coding variants identified in gorilla which are thought to cause inherited disease in humans. 
In addition to Kamilah, Kwanza and Mukisi, several further western and eastern gorilla 
samples were used for this. 

 
WESTERN EASTERN 
Kamilah 
(Reference) Kwanza Murphy (Gg013) Mukisi 

Chr:Position 
gorGor3 Gene Hs 

Ref HDA1 Gg Ref 

Illumina Sanger Illumina Sanger Illumina Sanger Illumina Sanger 
Chr5:39797090  GRN 2  C 2 T 2 A 2, 3 AA A AA A No Call A AA A 
Chr5:44556816  TCAP 2  G 2 A 2 T 2 TT T TT T No Call T TT T 
Chr16:210823  HBA1 4  C A A AA A AA A No Call A No Call A 

 
Table ST8.10. Sequencing of gorilla variants associated with inherited disease in humans. Notes: 
1HDA= Human Disease Allele; 2GRN and TCAP are coded on opposite strands in humans and gorillas 
so the gorilla allele is the same as the disease allele; 3The GRN “A” allele is also seen in 4 additional 
Western (Effie, Floquet, Fubu, Ruby) and one additional Eastern (Victoria) gorilla samples; 4annotated 
as “Novel protein coding” in Ensembl. 

9. Fosmid analysis 
Sequencing and gene content. 

We sequenced and finished 13 fosmids covering two groups of genes on chromosomes 22 and 
16 (Fig. SF9.1) 

The first group aligns to chromosome 22 and contains the following protein coding genes: 
GH1, GH2, Four CSH genes (CSH1 & 2), CD79B, APOBEC3A, APOBEC3B, APOBEC3C, 
APOBEC3D, APOBEC3G, APOBEC3H. The growth hormones (CSH & GH) exist as serial 
duplications. Compared to the orthologous region in the human genome there is an additional 
copy of the CSH gene. One CSH gene is truncated by a gap in the fosmid sequence. The 
APOBEC genes have conserved synteny when compared to the human orthologous region. 
APOBECF is missing but is predicted to sit within a gap in the fosmid and has been found in 
an isolated scaffold in ensembl. The position of a number of pseudogenes is also conserved in 
the human genome. 

The second group maps to chromosome 16 and contains the following protein coding genes: 
TNP2, PRM3, PRM2, PRM1, APOL3, APOL4, MYH16. There are no gorilla specific 
duplications in this cluster. MYH16, which is a pseudogene in humans, appears to have an 
ORF but is truncated at the 5’ end (c.650bp) at the edge of the fosmid. 
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Fig SF9.1: Annotated fosmid sequences: The first two columns show the alignment for the Gorilla 
fosmid which maps to human chromosome 22. The second two columns show the alignment for the 
fosmid which maps to chromosome 16. Horizontal breaks between vertical boxes indicate missing data. 
The forward and reverse strand are indicated with black arrows. Lines between vertical boxes show 
homology between predicted gene models. Predicted genes or pseudogenes found in one species but 
not the other are coloured as indicated in the figure key. 

Evolutionary analysis 

The longest predicted transcript of each locus was used for evolutionary analyses. Each gene 
was BLASTed against the nr database on genebank to obtain orthologous genes from other 
primate species where available. In addition the orthologous genes from species with 
annotated genomes on Ensembl were downloaded. Sequences were aligned in MEGA 4.0 
(Tamura, Dudley et al. 2007) and phylogenetic trees were build using a Neighbour Joining 
method and bootstrap of 500 replicates. Gene families such as the growth hormones (GH and 
CSH genes) and PRMs were analyses together.  

The rate of molecular evolution was analysed using PAML (Yang 2007). We performed two 
tests. First, we tested whether there is evidence for positive selection acting at a proportion of 
sites across the entire tree using the site models (M2a vs. M2). Second, we tested whether 
there is evidence for a change in selection along the Gorilla branch compared to the 
background rate (either deceleration or acceleration) using the branch models. As alignments 
of gene families include many segments where sequence is present for one gene but not 
another, all PAML analyses were performed without removing ambiguous data so percentage 
of adaptively evolving sites under the site models may be off. 
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Growth Hormone cluster 

Growth hormone genes have previously been shown to have duplicated multiple times within 
primates and their pattern of molecular evolution suggests a role for adaptive evolution of 
their protein coding genes (Wallis 2001; Revol De Mendoza, Esquivel Escobedo et al. 2004). 
However gene conversion events have been documented in previous studies which suggest 
unravelling their evolutionary history will be complicated (Revol De Mendoza, Esquivel 
Escobedo et al. 2004). 

Phylogenetic trees of the growth hormones found with the fosmids, combined with data from 
the nr genebank database and ensemble confirm the presence of an additional Gorilla specific 
duplication event (Fig. SF9.1). However bootstrap values are low and there is some 
uncertainty over the exact relationship between different copies, particularly in the CSH 
cluster. Further more gene trees produced using the more divergent terminal end of the genes 
produce different topologies than trees based on the rest of the alignment which has stronger 
homology across genes. 

The site model tests in PAML on the shared region show a proportion of sites (1.6%) in these 
genes have evolved adaptively (ω = 5.168, LR = 8.813, p = 0.012). There is also some 
evidence of adaptive evolution at the terminal end of GH2-like genes (proportion of sites = 
37.5%, ω = 2.854, LR = 23.577 p < 0.001). However this result depends on using the gene 
tree topology obtained just using the terminal end, and when the gene tree for the whole 
coding sequence is used in the analysis significance is lost (LR = 1.716 p = 0.424), suggesting 
a complicated pattern of evolution of these genes. 

Branch models comparing the dN/dS on the Gorilla branches to the rest of the tree suggest a 
significant slow down of evolutionary rate in Gorillas (Gorilla ω = 0.1667, Background ω = 
0.6514, LR = 5.337 p = 0.0209), suggesting stronger purifying selection on the growth 
hormones during Gorilla evolution. However when just the sequences with GH2-like terminal 
ends are considered there is no evidence of a Gorilla slow down (Gorilla ω = 1.0505, 
Background ω = 0.8640, LR = 0.223, p = 0.637) again suggesting a complex pattern of 
molecular evolution at these loci.  
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Figure SF9.1: Gene tree of Growth Hormones (GH and CSH genes) showing Gorilla Fosmid sequences 
and Ensembl sequences (addition of further data doesnʼt greatly affect the tree) and the additional CSH 
duplication where the duplicate genes show high similarity to each other and an unnamed Gorilla CSH 
gene (presumably the same gene) annotated on Ensembl. 

APOBEC cluster 

Members of the APOBEC gene family generally cataylse the deamination cytosine to uracil. 
Rodents have one copy of APOBEC3 whereas humans have at least 6 copies, some of which 
have evolved adaptively apparently in relation to genome defense via RNA/DNA editing 
((Sawyer, Emerman et al. 2004)). The phylogenies of the additional APOBEC sequences and 
the Gorilla Fosmid APOBECs show no evidence of Gorilla specific duplications (Fig. SF9.2). 
Several APOBEC3 genes are missing from the fosmids however they are predicted to fall in 
gaps in the fosmid sequence. 
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Figure SF9.2: Gene tree of APOBEC genes  

 
Site models show a strong signal of adaptive evolution across the APOBEC genes, with 
13.2% of sites evolving with an average dN/dS of 2.761 (LR = 64.204, p <0.0001). However 
the rate of evolution along the Gorilla lineages does not differ from the background rate 
(Gorilla ω = 0.6765, background ω = 0.753 LR = 0.104 p = 0.747). The APOBEC4 cluster 
was not included in the PAML analysis as they appear to align in a different frame to the 
others. APOBEC3 genes were then realigned without APOBEC1,2 & 4, a new gene tree was 
built and the evolutionary rate of this cluster reanalysed. A site model test for positive 
selection just on the APOBEC3 cluster shows very strong evidence for adaptive evolution 
(LR = 128.189, p <0.0001) with 25.45% of sites evolving with an average dN/dS of 2.871. 

PRM genes 

Protamines replace histones in sperm cells during spermatogenesis and PRM1 has previously 
been found to have experienced positive selection in apes ((Wyckoff, Wang et al. 2000)). One 
copy of PRM 1-3 is found in the fosmids, with no evidence for duplications (Fig. SF9.3). 
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Figure SF9.3: Gene tree of PRM genes 

 
Consistent with previous analyses (Wyckoff et al., 2002) we find significant evidence for 
positive selection acting on PRM1 (LR = 20.712, p <0.001) which has 44% of sites evolving 
with a dN/dS of 6.902. PRM2 and PRM3 do not appear to show any evidence for positive 
selection (LR = 0.355, p = 0837; LR = 0 p = 1.0 respectively). We find no evidence for a shift 
in selection pressure on any gene during Gorilla evolution, but this may be due to a small 
number of substitutions being involved. Wyckoff et al. also noted PRM1 is the only gene of 
the three to be ‘present in sperm in its entirety’. 

10. Transcriptome analysis 
Analysis of transcriptome variation between species by RNA sequencing offers several 
advantages over previously used gene expression arrays that have suffered from the problem 
of designing probes in an unbiased way. Thus, RNA sequencing is likely to yield a more 
accurate quantification of gene expression levels. Additionally, sequencing provides 
information of transcription along the entire gene, enabling the analysis of differences in 
splicing between species. Thus, we sought to analyze the transcriptome of four primate 
species: gorilla, chimpanzee, bonobo, and human.  

Total RNA was extracted from lymphoblastoid cell lines of one gorilla individual 
(“Murphy”), 2 chimpanzee, and 2 bonobo individuals. We sequenced each individual with 
paired end sequencing in one lane in an Illumina GAII sequencer. The read lengths and insert 
sizes are given in Table ST10.1. Additionally, we used RNA sequencing data of 8 human 
individuals (Montgomery, Sammeth et al. 2010).  
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Sample Species Lanes Read length 
(bp) 

Insert Size 
(bp) 

Total reads 
(million) 

Mapped reads 
(million) 

GG013 Gorilla gorilla 4 1 lane: 2 x 54 
3 lanes: 2x 76 

200 65.4 29.6 

EB176 Pan trologdytes 1 2 x 54 300 12.8 7.2 
PTR8 Pan trologdytes 1 2 x 54 300 17.1 9.7 
PC1582 Pan paniscus 1 2 x 54 200 40.2 22.7 
PC1583 Pan paniscus 1 2 x 54 300 31.5 17.7 
NA11994 Homo sapiens 1 2 x 36 200 19.3 10.0 
NA12003 Homo sapiens 1 2 x 36 200 15.2 8.2 
NA12045 Homo sapiens 1 2 x 36 200 26.9 14.1 
NA12154 Homo sapiens 1 2 x 36 200 25.8 13.6 
NA12812 Homo sapiens 1 2 x 36 200 25.1 13.1 
NA12814 Homo sapiens 1 2 x 36 200 24.5 12.6 
NA12874 Homo sapiens 1 2 x 36 200 21.5 10.0 
NA12891 Homo sapiens 1 2 x 36 200 16.3 9.5 
Table ST10.1: The RNA-sequencing dataset. The human data is from Montgomery et al.(Montgomery, 
Sammeth et al. 2010). 

The sequence reads were mapped to the respective genomes (Ensembl 58; bonobo data 
mapped to the chimpanzee genome) with Maq 0.7.1, and Samtools 0.1.11 was used to extract 
information of sequence coverage. We used two different gene annotations to quantify reads 
mapping to exons, transcripts and genes. As a baseline, the Ensembl 58 annotations were used 
as standard gene models for each species, and we obtained the subset of these genes that were 
Ensembl 1:1 orthologs between all three species pairs – these are referred to as standard 
orthologous genes. However, in most species comparisons, we needed a more precise 
definition of orthology at exon level. To this end, we defined orthologous exons as sequence 
regions of 1:1 orthologous genes that are included the 5-way EPO alignment and annotated as 
exons in all the three species, with overlapping exons within a species pooled into one. The 
sum of orthologous exons per gene is referred to as exon-ortholog gene. For exon orthologs 
and exon-ortholog genes, those with more than 5% length difference between any of the 
species pairs have been excluded. Fig. SF10.1 shows statistics of mapping and quantification 
to different annotations. Table ST10.2 shows the numbers of genes and exons with read 
counts >=20 and >= 10, respectively, in different species. Altogether, we obtained data for 
11849 nonredundant standard orthologous genes across species, 79013 orthologous exons, 
and 9746 exon-ortholog genes. These numbers are consistent with the expected number of 
genes expressed in the studied cell line. In subsequent analyses, only the genes and exons 
above these thresholds in at least one species were used, and in pairwise species comparisons, 
genes and exons under these thresholds in both species were excluded. 
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Figure SF10.1: Mapping statistics for RNA-sequencing lanes, using standard species-specific gene 
models (a) and orthologous exons (b).  

 
 Human Chimpanzee Bonobo Gorilla Total 
Standard gene models           
Total number of genes 51716 27166 27166 29217 NA 
Genes with >= 20 counts 15778 11263 12640 11959 NA 
Total number of 
orthologous genes 

16511 16511 16511 16511 16511 

Orthologous genes with 
>= 20 counts 

10145 9484 10339 10000 11826 

Total number of exons 562032 241850 241850 237229 NA 
Exons with >= 10 counts 218338 85635 108872 62893 NA 
Orthologous exons           
Total number of genes 14982 14982 14982 14982 14199 
Genes with >= 20 counts 8274 8050 8934 8801 9746 
Total number of exons 150187 150187 150187 150187 147686 
Exons with > 10 counts 58232 51062 67874 59095 78857 
Table ST10.2: Gene and exon counts for the different annotations. The genes > 20 and exons >= 10 
counts are for means between lanes within species, and for any species for the total count. For 
orthologous exons, the exons and genes with >5% length difference between any species pair have 
been excluded from the total count.  

We investigated the clustering of the samples by using the tools implemented in DESeq 
package. We normalized the counts in orthologous exons using variance stabilizing 
transformation, and calculated Euclidean distances between the lanes (Fig. SF10.2). Two 
human samples that appeared as outliers have been removed from the analysis, and the four 
lanes of data derived from a single gorilla individual have been pooled – they showed 
minuscule differences from each other despite one lane having a different read length. 
Notably, the high correlation between the bonobo samples with different insert sizes 
compared to sample pairs with the same size indicates that the variation in insert size is 
unlikely to be a major source of bias. Similar analysis based on exon-ortholog and standard 
ortholog gene quantification yielded similar results (data not shown).  
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Figure SF10.2: A multidimensional scaling plot of Euclidean distances between samples based on 
normalized read counts in orthologous exons.  

 

 
Figure SF10.3: Expression levels in exon-ortholog genes in the four species. The values correspond to 
median of log2 read counts in exon-ortholog genes per species.  
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Fig. SF10.3 shows mean expression levels of exon-ortholog genes between different species. 
As a measure of distance between expression values, we used the absolute distance between 
variance standardized counts in orthologous exons and exon-ortholog genes, first calculated 
between all sample pairs for each exon/gene and then obtaining distances between species 
pair as a mean of respective sample pairs. Fig. SF10.4 shows these distances of exon-ortholog 
genes for a multispecies comparison between gorilla, human and chimpanzee, enabling 
identification of genes with putatively gorilla-specific expression patterns.  

 
Figure SF10.4: Expression distances between exon-ortholog genes for gorilla-human and gorilla-
chimpanzee. 

 
Splicing variation was analyzed by comparing variation in expression distances between 
exons of a gene for the species pairs. In the absence of splicing differences between species, 
exons of a gene should show uniform distances between species, whereas splicing differences 
will increase the variation in exon distances. For all species pairs, these patterns were sought 
by first calculating expression distances of exons for all species pairs as the mean of 
expression differences of all corresponding pairs of individuals. The variance of square root 
normalized distances of all exons per gene was then used as a measure of splicing differences. 
We compared these differences between species to the diversity observed within humans by 
calculating the same statistics from expression distances between all the pairs of the eight 
human individuals. Fig. SF10.5 shows variance of exon distances plotted against gene 
distance for orthologous genes in the human-gorilla, human-chimpanzee and gorilla-
chimpanzee comparisons, as well as the within-species human-human comparison. In each 
case, horizontal and vertical lines show the maxima and 99th percentiles of the human 
distribution. Fig SF10.6 illustrates gorilla-specific splicing in the SQLE gene, involved in 
steroid metabolism. From the numbers in Table ST10.3, averaging over the three inter-species 
comparisons, we calculate that 7% of genes show significant splicing variation at the 1% 
level, based on the distribution within human. However we note the caveat that differences in 
data quality and sample size may contribute to the differences in these numbers. 

 

 Human-
gorilla 

Human-
chimpanzee 

Chimpanzee-
gorilla 

Human-
human 

Genes with exon variance > 99th centile of 
human distribution 

359 214 942 58 

Total genes compared 5178 4829 5171 5884 
Table ST10.3. Quantities in the comparison of splicing differences between the great apes. 
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Figure SF10.5: Variance of exon distances within each gene plotted against gene distance for 
orthologous genes in the human-gorilla, human-chimpanzee, gorilla-chimpanzee and human-human 
comparisons. In each case, horizontal and vertical lines show the maxima and 99th percentiles of the 
human distribution. 

 

Figure SF10.6: RNA sequence coverage in the squalene epoxidase gene (SQLE) in the gorilla, human, 
chimpanzee and bonobo, with all data pooled within species. The exon highlighted in red is not 
expressed in the gorilla, with the preceding intron containing a 2.9 kb insertion in this species.  

Next, we analyzed whether expression differences between species correlate with genetic 
differences. First, we studied whether incomplete lineage sorting in orthologous genes is 
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correlated to expression patterns, which is expected in some of the cases when ILS is driven 
by selection. We compared the species tree obtained from the expression distances to the 
genetic trees for each gene (most frequent pattern per gene for alignment filtered data). In 
total, this analysis included 5577 genes with both expression and genetic data. Altogether, we 
observed a significant enrichment of having an identical tree pattern in genetic and expression 
data (p = 0.026 based on 100 000 permutations). This enrichment was not, however, evenly 
distributed (Table ST10.4): especially for genes with a genetic tree of humans as the 
outgroup, the expression data shows a clear underrepresentation of the normal species tree, 
and a strong enrichment for an ape-specific expression pattern, suggesting that especially in 
these cases a proportion of the ILS correlates with selection.  

 
 genetic tree 
expression tree G.CH C.GH H.CG 
G.CH 1473 (+2.8%) 372 (-2.8%) 204 (-12.6%) 
C.GH 1430 (-1.2%) 389 (+0.7%) 250 (+6.1%) 
H.CG 997 (-2.3%) 281 (+3.1%) 181 (+9.0%) 
Table ST10.4: Correspondance between phylogenetic trees of genes based on genetic and expression 
data. The percentages indicate difference from the null. The species abbreviations are human (H), 
chimpanzee (C), and gorilla (G).  

We also analyzed whether genetic divergence correlates with expression divergence. We 
calculated the genetic identity for the coding regions of standard gene models between the 
three species pairs, and compared these to expression distances calculated for exon-ortholog 
genes. For most species pairs we observed a small but significant correlation (Table ST10.5), 
suggesting that genes with highly similar coding regions may be more likely to have similar 
expression profiles. This analysis may however be sensitive to different qualities of the 
genome sequences and the gene annotation in the apes relying on human annotation. A more 
consistent pattern of correlation is indeed observed when expression distances are compared 
to median Gerp conservation scores of genes based on genomes of 33 amniote species (Table 
ST10.5).  

 Correlation between expression 
distance and pairwise sequence 
identity  

Correlation between expression 
distance and amniote sequence 
conservation 

 rho p rho p 
human-chimpanzee -0.039 3.4E-04 -0.034 1.8E-03 
chimpanzee-human -0.026 0.016 -0.055 8.0E-07 
human-gorilla 0.004 0.735 -0.043 4.9E-05 
gorilla-human -0.037 4.1E-04 -0.079 9.6E-14 
chimpanzee-gorilla 0.020 0.059 -0.056 1.6E-07 
gorilla-chimpanzee -0.066 3.7E-10 -0.065 1.2E-09 
Table ST10.5: Correlation between genetic and expression divergence. The name listed first for each 
species pair denotes the species whose annotation is used for calculating the sequence identity to the 
other species, or the median Gerp conservation scores, and the table shows the Spearman correlation 
between these and the expression distance for exon-ortholog genes.  

11. ChIP-seq analysis 
The EB(JC) western gorilla LCL line was used for gorilla ChIP-seq assays as recently 
described (Schmidt, Wilson et al. 2009). Briefly 1x10^8 cells were cross-linked with 1% 
formaldehyde and CTCF-bound DNA immunoprecipitated with a CTCF antibody (Millipore, 
07-729). Immunoprecipitated DNA was end-repaired, A-tailed and single-end Illumina 
sequencing adapters ligated before 18 cycles of PCR amplification. 200-300 bp DNA 
fragments were selected and 36 bp reads sequenced on an Illumina Genome Analyser II 
according to manufacturer’s instructions. The experiment was performed in duplicate.  
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We used publicly available ENCODE data for the CEU European cell lines GM12878, 
GM19238 and GM12891 (McDaniell, Lee et al. 2010). The raw reads were aligned to the 
reference genomes (human GRCh37 or gorilla gorGor2) using Bowtie (Langmead, Hansen et 
al. 2010) with the parameters "-n 2 -m 3 -k 1 --best", allowing two mismatches and excluding 
reads mapping to over 3 locations in the genome. Reads were filtered for y-chromosome and 
mitochondrial DNA. Peaks were called on all datasets using MACS with default parameters 
and matched input (Zhang, Liu et al. 2008). The intersection of called peaks from replicates 
was used for further analysis and thus represents a stringent subset of peaks.  

CTCF binding events in both species were aligned using the Enredo-Pecan-Ortheus 6-way 
primate alignment available in Ensembl release. 60. 97% of human and 94% of gorilla CTCF 
binding events are contained within the primate-EPO alignment, and constitute the analysis 
space for all inter-species comparisons. To determine the CTCF sequence motifs, we first 
performed de novo motif discovery with NestedMica (Down and Hubbard 2005) using the 
parameters ”minLength 10 -maxLength 35 -numMotifs 6 -revComp” within a 50 bp window 
around the peak summit for the top 1000 human peaks ranked by MACS score. We then used 
the longest found motif to scan the entire peak regions for a motif match using the 
NestedMica utility nmscan at a score cutoff of -15.  

We analysed the intersect of two replicates for the three human ENCODE cell lines to obtain 
a measure of technical and inter-individual variation. While ~30 000 CTCF bound regions are 
shared among all three individuals, roughly 10 000 are unique to each human cell line (Fig. 
SF11.1A). Sites that are common to all three individuals are much more likely to be shared 
with gorilla (~ 60% of the individual-invariant sites versus < 20% of either one or two-
individual specific) (Fig. SF11.1B). Previous studies in human have estimated that up to 25% 
binding site differences occur within species (Kasowski, Grubert et al. 2010; McDaniell, Lee 
et al. 2010).  

For the inter-species comparison, we used a single cell line (GM12878), for which the 
fraction of CTCF binding sites associated with CpG islands was in the range of our gorilla 
data, as well as several other publicly available CTCF datasets (data not shown). Comparison 
of all human and gorilla CTCF bound regions revealed that species-specific binding events 
are generally similar to shared ones, with small differences in ChIP enrichment and motif 
content (Fig. SF11.1C-D). Species-specific regions tend to be smaller with respect to peak 
width, number of tags per region and have a slightly lower occurrence of the CTCF motif.  

The association of CTCF sites within CpG regions of the genomes was determined using 
existing CpG island annotations available in Ensembl release 60 for both species. In order to 
determine the genetic mechanisms underlying differences in CTCF binding, regions were 
classified on the basis of species occupancy (human-specific, shared and gorilla-specific) and 
CpG island association (non-CpG, shared CpG, species-specific CpG). For these classes we 
identified potentially bound CTCF motif instances and projected these onto the respective 
genome. We then quantified the proportion of indels, disruptions (gaps > 4 bp), substitutions 
and unchanged motifs. 

We analysed the distribution of binding events in the genome by plotting inter-peak and inter-
gene distances in three classes: gorilla-specific, shared and human-specific binding events. 
We found that a higher fraction of species-specific peaks are located at relatively small (up to 
2kb) distances from each other compared to shared peaks (data not shown) and that the 
fraction of species-specific binding sites with an inter-peak distance of less than 400 bp is 
significantly higher than for the shared binding events (p=5.251702*10-114 Fisher's one-
sided exact test). 

To test whether there is a high-level association between expression changes and CTCF 
binding, we mapped the number of species-specific, and shared binding sites per orthologous 
gene pair. We found a small, but significant correlation between the number of species-
specific peaks and Euclidian expression distance per gene – Spearman rho 0.05 and 
p=9.156*10-07. We plotted the INSR locus that shows high expression differences as well as 
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differential CTCF binding between human and gorilla by using the Ensembl Genome 
Browser in the multiple alignment primate EPO view, showing 1-1 positioning of one lane of 
CTCF ChIP-seq, as well as one lane of RNA-seq data in both human and gorilla.  

We found a small correlation (rho = 0.05, p = 9.1 ´ 10-7) between gene expression difference 
and the number of species-specific CTCF binding events per gene. Differential CTCF binding 
accompanying changes in gene structure and transcription (summarized in Table ST11.1) is 
illustrated at the insulin receptor (INSR) locus (Fig SF11.2), where regulatory changes might 
contribute to species-specific biology of glucose uptake. 

 

 
Figure SF11.1: CTCF ChIP-seq analysis in human and gorilla. (A) Three-way human CTCF overlaps. 
Binding events in three unrelated human ENCODE cell lines (GM12878, GM19238, GM12891) were 
overlapped to reveal numbers of shared and individual-specific bound regions. (B) Human CTCF 
binding events bound in gorilla. Regions that overlap gorilla specific for one, two or three human 
individuals are shown. (C) CTCF ChIP enrichment in species-specific and shared categories. (D) 
Fraction of human-specific, human-gorilla shared and gorilla-specific peaks that contain at least one 
CTCF motif. 
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Figure SF11.2: CTCF ChIP-seq and RNA-seq expression data in human and gorilla at the INSR locus. 
Brown blocks represent syntenous regions in the primate EPO alignment; Ensembl gene annotation is 
shown in red 

12. Genomic comparison of the Eastern and Western 
gorilla species 

To explore genetic variation within the Gorilla genus, we mapped reduced representation 
sequence data for the female Western Lowland gorilla EB(JC) and the male Eastern Lowland 
gorilla Mukisi (see ”Genome Sequencing” above) to the gorilla reference assembly. 
Excluding sites covered by less than five reads, this produced an average coverage depth of 
111x in EB(JC) and 71x in Mukisi within short regions distributed genome wide, representing 
~1.2% of genomic material in each individual, and with highly concordant representations: 
e.g. of sites covered by more than five reads in EB(JC), 92% were similarly covered in 
Mukisi. Moreover, coming from the same sequencing run, reads from each sample shared 
identical base-calling error characteristics. 

This data, along with the whole-genome Illumina sequence data for Kamilah, was mapped to 
the gorilla reference assembly using BWA (Li and Durbin 2010). Variants were called using 
SAMTOOLS (Li, Handsaker et al. 2009), filtering sites to include only those with depth > 20 
and < 90, and excluding those with consensus quality less than 20. The rates of heterozygous 
and homozygous variant calls were calculated and shown in Table 2 in the main paper. 

We note that the hom:het ratio for EB(JC) (0.56) is consistent with her coming from the same 
population as the assembled individual (Kamilah), as the expected ratio in this case is 0.5. To 
see why, consider the unrooted tree corresponding to the alignment of a diploid sample to a 
reference sequence, a tree with three leaves and three branches. Under the assumption of 
infinite sites each variant is caused by a mutation on just one of the branches, of which two 
give rise to heterozygous variants in the sample and only one (the branch leading to the 
reference) gives a homozygous non-ref variant. Thus we expect twice as many hets as homs 
whenever the sample chromosomes and the reference are interchangeable - i.e. when they are 
from the same population. 

Recall that in a panmictic population the rate of heterozygosity θ = 4Nµg where N is the 
population size, µ is the mutation rate, and g is the generation time. Using the values in Table 
3 for EB(JC) and Mukisi (θW = 0.178% and θE = 0.076% respectively), and assuming µ = 0.6 
× 10-9 per year per site and g = 20 years, we obtain NE = 15,800 and NW = 37,000. Accounting 
for the different mutation rate used, these numbers are similar to those reported in (Thalmann, 
Fischer et al. 2007). 
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The data for EB(JC) and Mukisi was then mapped to the human reference sequence 
(GRCv37), and variants again called using samtools with filtering as above. Sites in repeat-
masked regions of the human reference or in annotated segmental duplications were also 
excluded. Sites which passed these restrictions in both individuals, and in which one variant 
(non-human) allele was called in one or both individuals, were classified by genotype and 
counted as shown in Table ST12.1.  

EB(JC) genotype Mukisi genotype Sites in human 
alignment 

Proportion 

0/0 0/1 1919 0.02328 
0/0 1/1 2656 0.03222 
0/1 0/0 5284 0.06409 
0/1 0/1 1401 0.01699 
0/1 1/1 1794 0.02176 
1/1 0/0 1727 0.02095 
1/1 0/1 595 0.00722 
1/1 1/1 67065 0.81349 

Table ST12.1: Variant sites in alignment of EB(JC) and Mukisi data to human. Genotypes are 
encoded with 0 representing a match to the human allele and 1 a mismatch. 

We can show that the distribution of site counts in Table ST12.1 is not compatible with a 
clean split between the two species. In particular, consider the sites with pattern 0101, 1101 
and 0111 (where e.g. 0111 means genotype 0/1 in the Western individual and 1/1 in the 
Eastern): in each case, under a clean split model the variant mutation must have occurred 
within the ancestral population (discounting recurrent mutations). Looking back in time, let 
the probability of two chromosomes failing to coalesce at a locus before reaching the 
ancestral population be α in the Western population and β in the Eastern. Let θ be the scaled 
mutation rate in the ancestral population, and let q = θL, where L is the number of positions 
across the genome at which we are able to call genotypes in both individuals, given the 
filtering constraints. There are then three scenarios to consider with respect to these sites: 

1. With probability αβ, all four chromosomal lineages remain separate back to the 
ancestral population. Then, if we assume a constant effective population size before 
the split, we can use the result known both from population genetics and coalescent 
theory that in a set of samples the expected rate of segregating sites exhibiting n 
derived alleles is θ/n (e.g. (Ewens 2004; Hein, Schierup et al. 2005)). Thus in this 
case the number of sites with three derived alleles will be q/3, of which half will be 
0111 and half 1101. The number of sites with two derived alleles will be q/2, of 
which 2/3 will be 0101. 

2. With probability (1 – α) β, both Western chromosomes coalesce before the ancestral 
population but the Eastern chromosomes do not, meaning that three lineages exist at 
the time of speciation. Then the number of sites with two derived alleles present in 
these three lineages will be q/2, of which 2/3 will result in 1101 sites and 1/3 0011 in 
the four present-day chromosomes. Sites with one derived allele at speciation will 
give 1100 or 0001 configurations. 

3. With probability α (1 – β), both Eastern chromosomes coalesce before the ancestral 
population but the Western chromosomes do not; again three lineages exist at the 
time of speciation. The number of sites with two derived alleles present in these three 
lineages will be q/2, of which 2/3 will result in 0111 sites and 1/3 1100. Sites with 
one derived allele at speciation will give 0011 or 0100 configurations. 

Thus we can write the following expressions for the expected numbers of 0101, 1101 and 
0111 sites: 
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€ 

E n0101( ) =
1
3
qαβ

E n1101( ) =
1
6
qβ 2−α( )

E n0111( ) =
1
6
qα 2− β( )

 

from which we get estimators for α, β: 

€ 

ˆ α =
2n0101

2n1101 + n0101
, ˆ β =

2n0101

2n0111 + n0101
 

Now since α, β are probabilities, they must both lie in the interval [0, 1], meaning we must 
have n0101 ≤ 2n0111 and n0101 ≤ 2n1101 for consistency with a clean split model. In our data we 
find n0101 / n1101 = 2.35, with a 95% CI of (2.12, 2.58). In other words, there are too many 
shared heterozygous sites in the data for compatibility with a model in which the Eastern and 
Western Lowland gorilla populations separated with no subsequent genetic exchange. 

Effect of model assumptions 

The calculation makes two assumptions about the data, namely that the infinite sites 
approximation is valid (we ignore recurrent mutations) and that the ancestral population 
was unchanging in effective size. The former is reasonable in this context as we have only 
counted sites which are bi-allelic across all four chromosomes. 

To address the impact of possible variation in ancestral population size on our 
conclusions, we have carried out several coalescent simulations. Figure SF12.1 shows the 
results of these. 

 
Figure SF12.1. Coalescent simulations of a population split under different demographic models. Each 
dot represents a simulation of 5000 loci under the demographic model represented by its colour, 
indicated in the legend on the right-hand panel. Here T is the split time between the species, given in 
units of 2Ne (Ne the effective size of the ancestral and post-separation populations, except where 
otherwise indicated); 'bottleneck recent' occurs between t = 1.1 and 1.6, during which the ancestral 
population is reduced to 0.2Ne; 'bottleneck old' is the same but occurs between t = 2.0 and 2.5. N2 is the 
effective size of the 'eastern' population. We also simulated the effects of migration between the species 
after separation, represented by M in units of 4Nem, where m is fraction of the total population migrating 
each generation. left, alpha_hat (x-axis) and beta_hat (y-axis) are estimators of the probabilities of two 
lineages avoiding coalescence within the west and east gorilla populations respectively. Under a clean 
split model these are expected to both lie between 0 and 1. right, the x-axis n0101/n1101 should be less 
than 2 given a clean split, while the y-axis (n0101 / (n1100 + n0011)) is the ratio of shared heterozygous sites 
to 'fixed' or homozygous differences. This has an expected value of 2 for a single population with no 
split, but will be less than 2 when a split has occurred, introducing extra 1100 and 0011 sites. The cross 
marks where the gorilla data falls on these plots. 
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Clearly, none of the clean split scenarios give results close to the observed data points. In 
particular, the two bottleneck scenarios have negligible effect on the estimators, seen clearly 
on the left-hand panel.  

We do see simulated results closer to the data when migration has occurred (which invalidates 
the clean split assumption), and the right hand panel shows that the y-axis distinguishes 
between recent and older splits even when migration is nonzero. However we haven't 
attempted to fit by eye set of parameters which matches the gorilla data here. The space is 
very large, and there are several other parameters one could choose to vary, such as N1, N2 
and asymmetry or time variation in migration. 

These simulations show that our criteria for the absence of gene flow are tolerant of time 
variation in the ancestral population size. Note also that selection, which corresponds to 
variation in Ne between loci, can be represented simply by averaging or combining models 
with different Ne parameters, since the loci in our dataset are independent. Therefore this also 
should also not effect our inference of gene flow between species. 

Sequence divergence estimate 

We conclude that speciation between eastern and western gorillas occurred as an initial 
divergence followed by a period of limited genetic exchange. The timing of this initial 
divergence is difficult to estimate because it is not well defined. Indeed, some degree of 
separation or substructure with exchange could have existed for an indefinite time. Moreover 
this exchange could have occurred continuously, at constant or fluctuating levels, or it could 
have been intermittent, perhaps even comprising just one short significant episode. It may 
also have been asymmetric between the two species. The inference of historical gene flow 
between populations using present-day genetic data constitutes a challenging inverse 
problem.  

We can estimate the average sequence divergence dEW between the species. First we note that 

€ 

dEWL =
1
2
n0100 + n0111( )+ n1100 +

1
2
n0001 + n1101( )+ n0011  

and L can be eliminated by scaling to the human-gorilla sequence divergence, via the total 
height of the tree, as follows. 

For any phylogeny in which the branches correspond to segregating sites as shown in Fig. 
SF12.3, we can estimate the total mean height of the tree (in units of number of mutations) by 
averaging over the paths from each leaf to the root:  

€ 

H =
1
k

iSi
i=1

k−1

∑  

where k is the number of leaves (chromosomes) and Si is the number of sites with i derived 
alleles.  
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Figure SF12.3: Ancestral tree topologies relating four chromosomes: two from the Western 
Lowland gorilla EB(JC) and two from the Eastern Lowland gorilla Mukisi. In total there are 15 possible 
rooted tree topologies describing the ancestry of the four chromosomes at each of the sites counted in 
Table S3 (with human as an outgroup); however since our variant calls are unphased, we do not 
distinguish between the chromosomes within each individual, leaving us with just six topologies to 
consider. In each tree, branches are labelled and coloured according to the present-day genotypes 
which would result from a variant mutation on that branch (under an infinite sites assumption).  

In this case we have 

€ 

H =
1
4
n0100 + n0001 +2 n1100 + n0011 + n0101( )+ 3 n0111 + n1101( )( ) 

where e.g. n1100 is the number of sites with genotype 1/1 in EB(JC) and 0/0 in Mukisi (and 
recall that 1/0 sites in either individual are counted as 0/1 since we only have genotypes). We 
can calibrate this to the sequence divergence dHG between human and gorilla by noting that 

dHGL = H + n1111 

so that 

€ 

H
dHGL

=
H

n1111 +H
 

Using the site calls for the alignment of EW_JC and Mukisi data to human we calculate 
H/dHGL = 0.088 with a 95% bootstrap confidence interval (CI) of 0.0865-0.0895, and dEWL/H 
= 1.42 (CI 1.40-1.44). 

Then we can write  

€ 

dEW =
dEWL
H

H
dHGL

dHG  

Previously we found dHG = 0.017 (Table ST3.3), which gives dEW = 0.0021. Taking µ = 0.6 x 
10-9 bp-1y-1 gives a sequence divergence time dEW/2µ = 1.75 Mya. 
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Isolation-migration model 

In order to estimate the speciation time and amount of gene flow between the Eastern and 
Western Lowland gorilla subspecies we implemented a two species isolation-with-migration 
(IM) model (Nielsen and Wakeley 2001) (Fig. 4c in the main paper). For two diploid 
individuals, at any given site there are 100 possible genotype combinations x1x2:y1y2, x1, x2, 
y1, y2 ∈ (A, C, G, T). Our approach compares the counts of each of these combinations in the 
data for EB(JC) and Mukisi with probabilities calculated by summing over all possible 
topologies for the four lineages. In each topology mutations are accounted for by integrating 
out the coalescent prior with a nucleotide substitution model; we assumed a general time 
reversible substitution model with parameters estimated from the data. 

The full IM model has 6 parameters: The population sizes for the two gorilla species and their 
ancestor are NW, NE and NA and the split time is τ years ago. Migration events from one 
population to the other and backwards in time have rates MWE and MEW per generation. 
Migration rate parameters have units of migrations per mutation event such that m = M / (µg). 
Rates of the two kinds of migration events are denoted by mWE and mEW. The scaled 
parameters are θW = 4NWµg, θE = 4NEµg, θA = 4NAµg, mWE = MWE / (µg), mEW = MEW / (µg) 
and T = τµ. 

However, we observed identifiability issues in the full model using maximum likelihood 
estimation, in the sense that a very wide range of parameters were compatible with the data, 
including almost arbitrarily ancient speciation times. Therefore we explored a constrained 
model in which θW = θA = 0.178% and θE = 0.076% (effectively fixing population sizes at 
their present-day values, and with ancestral population size equal to that of the Western 
lowland population) and symmetric migration mWE = mEW = m. We therefore only have two 
unknown parameters in this model, namely the split time and the migration rate. In Fig. 4d we 
show the log-likelihood for various values of the speciation time and migration rate, with a 
maximum likelihood solution at τ = 500 kya, and a migration rate of 0.2 migration events per 
generation, assuming a 20-year generation time and a mutation rate of 0.6 × 10-9 per bp per 
year. Nevertheless we reiterate that additional degrees of freedom, such as varying population 
sizes or asymmetry in gene exchange, allow a much broader range of solutions. 

Protein coding differences between gorilla species 

Additional capillary (Sanger) sequencing was undertaken to check selected protein coding 
variants differentiating the western gorillas from the eastern individual Mukisi, either as non-
synonymous SNPs or stop codons. 

 
WESTERN EASTERN 
Kamilah 
(Reference) Kwanza Murphy (Gg013) Mukisi 

Chr:Position 
(gorGor3) Gg Ref Alt 

Illumina Sanger Illumina Sanger Illumina Sanger Illumina Sanger 
Chr19:14955128  C T CC C CC C No Call C TT T 
Chr19:14958507  T C TT T TT T No Call T CC C 
Chr19:14958517  A G AA A7G AA A7G No Call A7G GG A6GG 
Chr19:14958540  A G AA A AA A No Call A GG G 
Chr19:14958570  A G AA A AA A No Call A GG G 
Table ST12.3. SNPs variants in EMR3. 

WESTERN EASTERN 
Kamilah 
(Reference) Kwanza Murphy (Gg013) Mukisi 

Chr:Position 
(gorGor3) Gene Gg Ref Alt 

Illumina Sanger Illumina Sanger Illumina Sanger Illumina Sanger 
Chr19:37077800  CLC G A GG G GG G No Call G AA A 
Chr20:43075776  SEMG2  G T GG G GG G No Call G TT T 
Table ST12.4. Loss of function variants in eastern gorillas in the genes SEMG2 associated with sperm 
competition and the Charcot-Leyden crystal protein (CLC)/galectin-10 gene associated with 
inflammation. 
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13. Genome sequence duplications  
We detected genomic duplications in the Western Lowland gorillas Kwanza (Ventura et al. 
submitted) and Kamilah using the whole-genome shotgun sequence detection (WSSD), an 
assembly independent method which identifies regions greater than 20 kbp in length with a 
significant excess of read depth within 5 kbp overlapping windows (Bailey et al. 2002). 
WSSD analysis was performed using whole genome Illumina reads from both gorillas, 
following correction methods specific to next-generation sequencing data (such as biases in 
the GC distribution) as previously described (Alkan et al. 2009). The reads were mapped 
within an edit distance of 4 to a repeat-masked version of the human genome using MRFAST, 
an algorithm that tracks all read map locations allowing read-depth to be accurately correlated 
with copy number in duplicated regions (Alkan et al. 2009). Excluding X, Y and random 
chromosomes, we predicted 112 Mbp of duplication in Kwanza and 113 Mbp in Kamilah, of 
which 102.7 Mbp was shared. 

By way of comparison, we used data for a set of six HapMap individuals (NA18507, 
NA12878, NA12981, NA12892, NA19238, NA19239) (Sudmant et al. 2010), taking all 15 
possible pairwise combinations and looking as before for private duplications bigger than 20 
kbp in each pair. Fig. SF13.1 shows that the level of private duplication found in the two 
gorillas lies outside the range of human private duplications found in this way. 

To get a more accurate measure of gorilla genomic duplication, we reclassified the WSSD 
duplication maps using array comparative genomic hybridization. Custom microarrays were 
created based on a customized oligonucleotide microarray (NimbleGen, 385,000 isothermal 
probes) targeted specifically to the gorilla segmental duplications. We then carried out a 
hybridization experiment using genomic DNA from Kwanza and Kamilah (the same samples 
as were used in sequencing), including replication with test and reference labels swapped. 
The log2 relative hybridization intensity was calculated for each probe, and we restricted our 
analysis to regions greater than 20 kbp in length and containing at least 20 probes. After 
normalization, specific duplications were detected if the median log2 of the region was 
beyond previously established thresholds (minimum 10 probes, median log2 of the region = 
0.2) (Marques-Bonet et al. 2009). 

Using this approach, we reclassified 289 duplications (totaling 10.1 Mbp), of which 
approximately 50% were individual-specific false positives, leaving 0.92 Mbp of validated 
duplications specific to Kwanza and 1.55 Mbp specific to Kamilah (Table ST13.1). By 
comparison, in a similar analysis of three humans (Alkan et al. 2009) only ~100 kbp of 
validated private duplications were found between any two individuals. 

We also found 16 genes that are duplicated in one or other of Kamilah and Kwanza (6 
completely and 10 partially duplicated) (Table ST13.2; Fig. SF13.2 shows an example at the 
SGMS1 locus). 
 
Found in WSSD duplications  

> 20 kbp (Mbp) 
Validated duplications > 
20 kbp (bp) 

Number of validated 
duplications > 20 kbp 

Kwanza only 3.1 923,398 24 
Kamilah only 3.3 1,551,983 30 
Kamilah and Kwanza 95 101,703,787 1359 
Table ST13.1 Duplications longer than 20 kbp in Kwanza and Kamilah detected by WSSD and validated 
and reclassified by aCGH.  



Scally et.al - Supplementary Information 74 

 

Figure SF13.1 Distribution of private duplications in 6 HapMap individuals (NA18507, NA12878, 
NA12981, NA12892, NA19238, NA19239) and two Western gorillas. 

 
Gene ID Protein ID Gene name Description Specific 

dup 
Log2 

Kwanza/Kamila
h aCGH 

Complete 
coding 

NM_001005513 NP_001005513 OR4C45 olfactory receptor, 
family 4, subfamily C 

Kamilah 
specific 

-0.63475 Complete 

NM_001005512 NP_001005512 OR4A47 olfactory receptor, 
family 4, subfamily A 

Kamilah 
specific 

-0.8365 Complete 

NM_001004703 NP_001004703 OR4C46 olfactory receptor, 
family 4, subfamily C 

Kamilah 
specific 

-0.278 Complete 

NM_003739 NP_003730 AKR1C3 aldoketo reductase 
family 1, member C3 

Kamilah 
specific 

-0.23025 Partial 

NM_147156 NP_671512 SGMS1 sphingomyelin synthase 
1 

Kamilah 
specific 

-0.642 Partial 

NM_001005242 NP_001005242 PKP2 plakophilin 2 isoform 2a Kamilah 
specific 

-0.3565 Partial 

NM_177550 NP_808218 SLC13A5 solute carrier family 13, 
member 5 isoform a 

Kamilah 
specific 

-0.36975 Partial 

NM_023073 NP_075561 C5orf42 hypothetical protein 
LOC65250 

Kamilah 
specific 

-0.32625 Partial 

NM_000772 NP_000763 CYP2C18 cytochrome P450 family 
2 subfamily C 
polypeptide 

Kwanza 
specific 

0.207 Partial 

NM_152309 NP_689522 PIK3AP1 phosphoinositide3kinase 
adaptor protein 1 

Kwanza 
specific 

0.65425 Partial 

NM_001005171 NP_001005171 OR52K1 olfactory receptor, 
family 52, subfamily K, 

Kwanza 
specific 

0.221 Complete 

NM_144705 NP_653306 TEKT4 tektin 4 Kwanza 
specific 

0.709 Complete 

NM_133437 NP_597681 TTN titin isoform novex2 Kwanza 
specific 

0.275 Partial 

NM_052958 NP_443190 C8orf34 hypothetical protein 
LOC116328 

Kwanza 
specific 

0.204 Partial 

NM_002195 NP_002186 INSL4 insulinlike 4 precursor Kwanza 
specific 

0.5535 Complete 

NM_000718 NP_000709 CACNA1B calcium channel, 
voltagedependent, N 
type 

Kwanza 
specific 

0.3205 Partial 

 
Table ST13.2: Gene table of gorilla specific validated duplications.  
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Figure SF13.2: An example of a validated gene (SGMS1) containing duplication in Kamilah. The 
top 3 tracks display the depth of coverage of whole-genome sequence data from gorillas Mukisi, 
Kwanza and Kamilah. In red, duplications are shown, when the depth of coverage exceeds 3 standard 
deviations of control regions. The purple square shows the Kamilah specific duplication. At the bottom, 
the results of the arrayCGH between Kwanza and Kamilah (and corresponding DyeSwap) and the gene 
track. 
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